ChatGPTとPythonを使って自動質疑応答機能を実装する方法
ChatGPT と Python を使用して自動質問応答機能を実装する方法
はじめに:
自然言語処理と人工知能の急速な発展により、自動質問および応答システムは、さまざまな分野で重要な部分になっています。 で人気のあるアプリケーションの 1 つです。 ChatGPT と Python を使用することで、自動質疑応答システムを迅速に実装し、効率的な質疑応答サービスを提供できます。この記事では、ChatGPT と Python を使用して自動質疑応答機能を実装する方法と、対応するコード例を紹介します。
背景:
ChatGPT は、OpenAI によって開発された大規模な事前トレーニングに基づく言語モデルであり、入力コンテキストに基づいて流暢な言語出力を生成できます。 Python プログラミング言語と組み合わせることで、シンプルなユーザー インターフェイスを確立することで、ChatGPT に基づく自動質疑応答システムを実装できます。
手順:
自動質問と回答機能を実装するための基本的な手順は次のとおりです:
- インストールの依存関係:
最初に、Python 依存関係ライブラリをインストールする必要があります、OpenAI の Python パッケージ (openai) およびその他の関連ライブラリが含まれます。 pip コマンドを使用してインストールできます。 - API キーの設定:
OpenAI 公式 Web サイトで API キーを申請し、環境変数の値として設定します。 - 質問と回答の関数を作成する:
ChatGPT を呼び出してユーザーの質問に答える Python 関数を作成できます。以下は簡単な例です:
import openai def get_answer(question): response = openai.Completion.create( engine="text-davinci-003", prompt=question, max_tokens=100, temperature=0.7, n=1, stop=None, settings={ "enable_snippets": False, "enable_suggest": True } ) return response.choices[0].text.strip()
この例では、openai.Completion.create
メソッドを使用して ChatGPT を呼び出します。ユーザーが提供した質問に基づいて、ChatGPT は回答を生成し、それを文字列として返します。
- ユーザー インターフェイスの構築:
次に、Python の Web フレームワーク (Flask や Django など) を使用してユーザー インターフェイスを構築し、ユーザーが Web ページや Web ページを通じて自動質問と回答をやり取りできるようにします。 API 呼び出し システム インタラクション。
from flask import Flask, request, jsonify app = Flask(__name__) @app.route('/ask', methods=['POST']) def ask_question(): data = request.json question = data.get('question') answer = get_answer(question) return jsonify({'answer': answer}) if __name__ == '__main__': app.run(debug=True)
これは、Flask フレームワークを使用して構築された簡単な例です。ユーザーは、POST リクエストを /ask
ルートに送信し、質問を含む JSON データを渡すことでこれを行うことができます。サーバーは get_answer
関数を使用して回答を取得し、それを JSON 応答としてユーザーに返します。
- デプロイとテスト:
コードをサーバーにデプロイし、サーバー上の依存ライブラリがインストールされていることを確認します。ユーザーインターフェースのURLにアクセスし、自動質疑応答システムが正常に動作するかテストします。
要約:
ChatGPT と Python を組み合わせることで、自動質疑応答システムを迅速に実装できます。 OpenAI の Python パッケージを使用して ChatGPT を呼び出し、Python の Web フレームワークを使用してユーザー インターフェイスを構築することで、ユーザーはシステムに簡単に質問して、対応する回答を得ることができます。さらに、実際のニーズに応じてコードを適切に調整および拡張して、より強力でパーソナライズされた自動質問応答サービスを提供できます。
参考資料:
- OpenAI Python パッケージのドキュメント: https://github.com/openai/openai-python
- Flask ドキュメント: https://flask 。 palletsprojects.com/
上記は、ChatGPT と Python を使用して自動質疑応答機能を実装する方法の概要と具体的なコード例です。この記事があなたのお役に立てば幸いです。また、自動質疑応答システムの開発が成功することを願っています。
以上がChatGPTとPythonを使って自動質疑応答機能を実装する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

PythonのPandasライブラリを使用する場合、異なる構造を持つ2つのデータフレーム間で列全体をコピーする方法は一般的な問題です。 2つのデータがあるとします...

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

正規表現は、プログラミングにおけるパターンマッチングとテキスト操作のための強力なツールであり、さまざまなアプリケーションにわたるテキスト処理の効率を高めます。

UvicornはどのようにしてHTTPリクエストを継続的に聞きますか? Uvicornは、ASGIに基づく軽量のWebサーバーです。そのコア機能の1つは、HTTPリクエストを聞いて続行することです...

Pythonでは、文字列を介してオブジェクトを動的に作成し、そのメソッドを呼び出す方法は?これは一般的なプログラミング要件です。特に構成または実行する必要がある場合は...

この記事では、numpy、pandas、matplotlib、scikit-learn、tensorflow、django、flask、and requestsなどの人気のあるPythonライブラリについて説明し、科学的コンピューティング、データ分析、視覚化、機械学習、Web開発、Hの使用について説明します。
