ChatGPT と Java を使用してインテリジェントな質疑応答コミュニティを開発する方法
ChatGPT と Java を使用してインテリジェントな質問と回答のコミュニティを開発する方法
インテリジェントな質問と回答のコミュニティは、今日のインターネット ソーシャルでますます注目を集めています。ユーザーに質問して答えを得ることでニーズを満たす便利な方法を提供します。人工知能の継続的な開発により、ChatGPT と Java を使用してインテリジェントな質問と回答のコミュニティを開発することがますます簡単になってきています。この記事では、ChatGPT と Java を使用してシンプルでインテリジェントな質問と回答のコミュニティを構築する方法を紹介し、いくつかの具体的なコード例を示します。
ステップ 1: ChatGPT をセットアップする
まず、質問と回答の機能を提供するために ChatGPT モデルをセットアップする必要があります。 OpenAI によって提供される GPT モデル、または Hugging Face Transformers ライブラリに基づく事前トレーニングされたモデルを使用できます。次のサンプル コードは、Hugging Face Transformers ライブラリの使用例を示しています。
import org.apache.commons.lang3.StringUtils; import org.huggingface.models.GPTModel; import org.huggingface.tokenizers.GPTTokenizer; public class ChatGPT { private GPTModel model; private GPTTokenizer tokenizer; public ChatGPT(String modelPath, String tokenizerPath) { model = GPTModel.fromPretrained(modelPath); tokenizer = GPTTokenizer.fromPretrained(tokenizerPath); } public String generateAnswer(String question) { String input = "Q: " + question + " A:"; float[] scores = model.generateScore(input).getScores(); String output = tokenizer.decode(scores); return StringUtils.substringBetween(output, "A: ", " "); } }
このコードでは、Hugging Face Transformers ライブラリの GPT モデルと GPTTokenizer を使用します。ここで、modelPath
と tokenizerPath
は、事前トレーニングされたモデルとトークナイザーのパスです。 generateAnswer
メソッドは、質問を入力として受け取り、生成された回答を返します。
ステップ 2: Q&A コミュニティを構築する
Java では、さまざまな開発フレームワークを使用して Q&A コミュニティのバックエンドを構築できます。ここでは、開発フレームワークとして Spring Boot を使用し、フロントエンドとバックエンド間の対話を処理するために REST API を使用します。簡単なサンプル コードを次に示します。
import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.RequestParam; import org.springframework.web.bind.annotation.RestController; @SpringBootApplication @RestController public class QASystemApp { private ChatGPT chatGPT; public QASystemApp() { chatGPT = new ChatGPT("path/to/model", "path/to/tokenizer"); } @GetMapping("/answer") public String getAnswer(@RequestParam String question) { return chatGPT.generateAnswer(question); } public static void main(String[] args) { SpringApplication.run(QASystemApp.class, args); } }
このコードでは、QASystemApp
クラスは、@SpringBootApplication
アノテーションと ## を使用して Spring Boot アプリケーションとしてマークされています。 @RestController アノテーションにより、REST API コントローラーとしてマークされます。
getAnswer メソッドは、
question という名前のリクエスト パラメーターを受け取り、
chatGPT.generateAnswer メソッドを呼び出して回答を生成します。
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>智能问答社区</title> </head> <body> <h1 id="智能问答社区">智能问答社区</h1> <form id="questionForm"> <label for="question">问题:</label> <input type="text" id="question" name="question" required> <button type="submit">提交</button> </form> <div id="answer"></div> <script> document.getElementById("questionForm").addEventListener("submit", function(event) { event.preventDefault(); var question = document.getElementById("question").value; fetch("/answer?question=" + encodeURIComponent(question)) .then(function(response) { return response.text(); }) .then(function(answer) { document.getElementById("answer").innerText = answer; document.getElementById("question").value = ""; }); }); </script> </body> </html>
要素を含む HTML ページを作成します。ユーザーが質問を送信すると、JavaScript コードを通じて質問の値を取得し、JavaScript の Fetch API を使用して GET リクエストを
/answerAPI に送信し、生成された回答を
以上がChatGPT と Java を使用してインテリジェントな質疑応答コミュニティを開発する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









Java の乱数ジェネレーターのガイド。ここでは、Java の関数について例を挙げて説明し、2 つの異なるジェネレーターについて例を挙げて説明します。

Java の Weka へのガイド。ここでは、weka java の概要、使い方、プラットフォームの種類、利点について例を交えて説明します。

この記事では、Java Spring の面接で最もよく聞かれる質問とその詳細な回答をまとめました。面接を突破できるように。

Java 8は、Stream APIを導入し、データ収集を処理する強力で表現力のある方法を提供します。ただし、ストリームを使用する際の一般的な質問は次のとおりです。 従来のループにより、早期の中断やリターンが可能になりますが、StreamのForeachメソッドはこの方法を直接サポートしていません。この記事では、理由を説明し、ストリーム処理システムに早期終了を実装するための代替方法を調査します。 さらに読み取り:JavaストリームAPIの改善 ストリームを理解してください Foreachメソッドは、ストリーム内の各要素で1つの操作を実行する端末操作です。その設計意図はです

Java での日付までのタイムスタンプに関するガイド。ここでは、Java でタイムスタンプを日付に変換する方法とその概要について、例とともに説明します。

カプセルは3次元の幾何学的図形で、両端にシリンダーと半球で構成されています。カプセルの体積は、シリンダーの体積と両端に半球の体積を追加することで計算できます。このチュートリアルでは、さまざまな方法を使用して、Javaの特定のカプセルの体積を計算する方法について説明します。 カプセルボリュームフォーミュラ カプセルボリュームの式は次のとおりです。 カプセル体積=円筒形の体積2つの半球体積 で、 R:半球の半径。 H:シリンダーの高さ(半球を除く)。 例1 入力 RADIUS = 5ユニット 高さ= 10単位 出力 ボリューム= 1570.8立方ユニット 説明する 式を使用してボリュームを計算します。 ボリューム=π×R2×H(4
