ホームページ ウェブフロントエンド jsチュートリアル JavaScript 関数を使用して機械学習モデルのトレーニングを実装する

JavaScript 関数を使用して機械学習モデルのトレーニングを実装する

Nov 03, 2023 pm 07:40 PM
javascript 関数 機械学習

JavaScript 関数を使用して機械学習モデルのトレーニングを実装する

JavaScript 関数を使用して機械学習モデルのトレーニングを実装する

機械学習の急速な発展に伴い、多くの開発者が JavaScript を使用して機械学習を実装する方法に注目し始めています。フロントエンドでモデルを学習し、トレーニングします。この記事では、JavaScript 関数を使用して機械学習モデルのトレーニングを実装する方法を紹介し、具体的なコード例を示します。

始める前に、いくつかの重要な概念を理解する必要があります。

  1. データセット: 機械学習モデルのトレーニングには、入力として一連のラベル付きデータセットが必要です。データセットは特徴とラベルで構成されます。特徴はデータを説明する属性であり、ラベルはモデルに予測させたい値を表します。
  2. モデル: モデルは既存のデータセットに基づいてトレーニングされ、新しい未知のデータの出力を予測するために使用されます。一般的なモデルには、線形回帰、デシジョン ツリー、ニューラル ネットワークなどが含まれます。
  3. トレーニング: データ セットをモデルにフィードすることにより、特定のアルゴリズムを使用してモデルのパラメーターが調整され、データ セット内のラベルをより適切に予測できるようになります。このプロセスはトレーニングと呼ばれます。

次に、JavaScript 関数を使用して、単純な機械学習モデルのトレーニング プロセスを実装してみましょう。

まず、データセットを準備する必要があります。特徴が家の面積であり、ラベルが対応する住宅価格であるデータセットがあるとします。データ セットを配列として定義でき、配列内の各要素はオブジェクトであり、面積と価格という 2 つの属性が含まれます。コードは次のとおりです。

const dataset = [
  { area: 100, price: 1000 },
  { area: 150, price: 1500 },
  { area: 200, price: 2000 },
  // 其他数据...
];
ログイン後にコピー

次に、モデルをトレーニングするための関数を定義する必要があります。この関数はデータセットを引数として受け取り、トレーニングされたモデルを返します。コードは次のとおりです。

function trainModel(dataset) {
  // 在这里实现模型的训练算法
  // ...
  // 返回训练好的模型
  return model;
}
ログイン後にコピー

関数内では、適切なアルゴリズムを使用してモデルをトレーニングできます。ここでは例として線形回帰を取り上げます。線形回帰は、予測値と真の値の間のギャップを最小限に抑えることによってモデルをトレーニングする方法です。

勾配降下法アルゴリズムを使用すると、予測値が真の値にどんどん近づくように、モデルのパラメーターを徐々に調整できます。コードは次のとおりです。

function trainModel(dataset) {
  // 初始化模型参数
  let w = 0;
  let b = 0;
  // 设置学习率
  const learningRate = 0.01;
  // 执行多轮训练
  for (let i = 0; i < 100; i++) {
    // 遍历数据集
    dataset.forEach(data => {
      const { area, price } = data;
      // 计算预测值
      const predictedPrice = w * area + b;
      // 计算预测值与真实值之间的差距
      const error = predictedPrice - price;
      // 更新模型参数
      w -= learningRate * error * area;
      b -= learningRate * error;
    });
  }
  // 返回训练好的模型
  return { w, b };
}
ログイン後にコピー

上記のコードでは、複数ラウンドのトレーニングを実行することにより、モデルのパラメーター w と b を継続的に調整します。トレーニングの各ラウンドでは、データセットを反復処理し、予測とギャップを計算し、勾配降下法アルゴリズムを使用してモデル パラメーターを更新します。

最後に、trainModel 関数を呼び出してモデルをトレーニングし、トレーニングされたモデルを使用して予測を行うことができます。コードは次のとおりです。

const model = trainModel(dataset);
console.log(model); // 输出训练好的模型参数
ログイン後にコピー

上記のコードにより、JavaScript 関数を通じて機械学習モデルのトレーニングを実装できます。もちろん、これは単なる例であり、実際のアプリケーションではより複雑なアルゴリズムやデータセットが必要になる場合があります。

この記事が、JavaScript 関数を使用して機械学習モデルのトレーニングを実装する方法を理解するのに役立つことを願っています。

以上がJavaScript 関数を使用して機械学習モデルのトレーニングを実装するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

この記事では、SHAP: 機械学習のモデルの説明について説明します。 この記事では、SHAP: 機械学習のモデルの説明について説明します。 Jun 01, 2024 am 10:58 AM

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 Jun 03, 2024 pm 01:25 PM

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

説明可能な AI: 複雑な AI/ML モデルの説明 説明可能な AI: 複雑な AI/ML モデルの説明 Jun 03, 2024 pm 10:08 PM

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります

あなたが知らない機械学習の 5 つの流派 あなたが知らない機械学習の 5 つの流派 Jun 05, 2024 pm 08:51 PM

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

フラッシュ アテンションは安定していますか?メタとハーバードは、モデルの重みの偏差が桁違いに変動していることを発見しました フラッシュ アテンションは安定していますか?メタとハーバードは、モデルの重みの偏差が桁違いに変動していることを発見しました May 30, 2024 pm 01:24 PM

MetaFAIR はハーバード大学と協力して、大規模な機械学習の実行時に生成されるデータの偏りを最適化するための新しい研究フレームワークを提供しました。大規模な言語モデルのトレーニングには数か月かかることが多く、数百、さらには数千の GPU を使用することが知られています。 LLaMA270B モデルを例にとると、そのトレーニングには合計 1,720,320 GPU 時間が必要です。大規模なモデルのトレーニングには、これらのワークロードの規模と複雑さにより、特有のシステム上の課題が生じます。最近、多くの機関が、SOTA 生成 AI モデルをトレーニングする際のトレーニング プロセスの不安定性を報告しています。これらは通常、損失スパイクの形で現れます。たとえば、Google の PaLM モデルでは、トレーニング プロセス中に最大 20 回の損失スパイクが発生しました。数値的なバイアスがこのトレーニングの不正確さの根本原因です。

C++ の機械学習: C++ で一般的な機械学習アルゴリズムを実装するためのガイド C++ の機械学習: C++ で一般的な機械学習アルゴリズムを実装するためのガイド Jun 03, 2024 pm 07:33 PM

C++ では、機械学習アルゴリズムの実装には以下が含まれます。 線形回帰: 連続変数を予測するために使用されるステップには、データの読み込み、重みとバイアスの計算、パラメーターと予測の更新が含まれます。ロジスティック回帰: 離散変数の予測に使用されます。このプロセスは線形回帰に似ていますが、予測にシグモイド関数を使用します。サポート ベクター マシン: サポート ベクターの計算とラベルの予測を含む強力な分類および回帰アルゴリズム。

Excel関数の公式の完全なコレクション Excel関数の公式の完全なコレクション May 07, 2024 pm 12:04 PM

1. SUM 関数は、列またはセルのグループ内の数値を合計するために使用されます (例: =SUM(A1:J10))。 2. AVERAGE 関数は、列またはセルのグループ内の数値の平均を計算するために使用されます (例: =AVERAGE(A1:A10))。 3. COUNT 関数。列またはセルのグループ内の数値またはテキストの数をカウントするために使用されます。例: =COUNT(A1:A10)。 4. IF 関数。指定された条件に基づいて論理的な判断を行い、結果を返すために使用されます。対応する結果。

機械学習における Golang テクノロジーの今後の動向の展望 機械学習における Golang テクノロジーの今後の動向の展望 May 08, 2024 am 10:15 AM

機械学習の分野における Go 言語の応用可能性は次のとおりです。 同時実行性: 並列プログラミングをサポートし、機械学習タスクにおける計算量の多い操作に適しています。効率: ガベージ コレクターと言語機能により、大規模なデータ セットを処理する場合でもコードの効率が保証されます。使いやすさ: 構文が簡潔なので、機械学習アプリケーションの学習と作成が簡単です。

See all articles