目次
1. はじめに
2. バイアスと分散
モデルがトレーニング データでは非常に優れたパフォーマンスを発揮するが、テスト データではパフォーマンスが低下する場合、それは過学習 (新しいデータ) と呼ばれます。この場合、機械学習モデルはトレーニング データのノイズに適合し、テスト データに対するモデルのパフォーマンスに悪影響を及ぼします。バイアスが低く分散が大きいと、過学習が発生する可能性があります。
「規則的な」という用語「」では、調整された損失関数を削減し、過剰適合または過小適合を回避するために機械学習モデルを調整する方法について説明します。
8. 概要
ホームページ テクノロジー周辺機器 AI 機械学習における正則化とは何ですか?

機械学習における正則化とは何ですか?

Nov 06, 2023 am 11:25 AM
機械学習 正則化 laplace

1. はじめに

機械学習の分野では、トレーニング プロセス中に関連するモデルが過学習または過小学習になる可能性があります。これを防ぐために、機械学習で正則化操作を使用してモデルをテストセットに適切に適合させます。一般に、正則化操作は、過学習や過小学習の可能性を減らすことで、誰もが最適なモデルを取得できるようにします。

この記事では、正則化とは何か、正則化の種類について理解します。さらに、バイアス、分散、過小適合、過適合などの関連する概念についても説明します。

くだらない話はやめて、始めましょう!

2. バイアスと分散

バイアスと分散は、学習したモデルと実際のモデルを説明するために使用されます。ギャップの 2 つの側面

を書き直す必要があります。この 2 つの定義は次のとおりです。

  • バイアスとは、 use all 可能なトレーニング データ セットでトレーニングされたすべてのモデルの出力の平均と、真のモデルの出力値の差。
  • 分散は、異なるトレーニング データセットでトレーニングされたモデルの出力値間の差です。

機械学習における正則化とは何ですか?

# バイアスにより、個々のデータ ポイントに対するモデルの感度が低下する一方で、データの一般化が促進され、孤立したデータポイントに対するモデルの感度。必要な機能がそれほど複雑ではないため、トレーニング時間も短縮できます。高いバイアスは、ターゲット関数の信頼性が高いと想定されていることを示しますが、場合によってはモデルの適合不足につながることがあります。

機械学習における分散 (分散) は、小さい値に対するモデルの感度を指します。データセットの変更。間違いです。データセットには大きな変動があるため、アルゴリズムはトレーニング セット内のノイズと外れ値をモデル化します。この状況は、多くの場合、過剰適合と呼ばれます。新しいデータセットで評価すると、モデルは基本的にすべてのデータポイントを学習するため、正確な予測を提供できません

比較的バランスの取れたモデルバイアスが低く分散が小さい場合、バイアスが高く分散が大きい場合は、過小適合と過適合が生じます。

3. アンダーフィッティング

モデルがトレーニング データのパターンを正しく学習できず、新しいデータに一般化できない場合にアンダーフィッティングが発生します。アンダーフィッティングされたモデルはトレーニング データのパフォーマンスが低く、不正確な予測につながる可能性があります。高いバイアスと低い分散が発生すると、アンダーフィッティングが発生する傾向があります

機械学習における正則化とは何ですか?


# #4.過学習

モデルがトレーニング データでは非常に優れたパフォーマンスを発揮するが、テスト データではパフォーマンスが低下する場合、それは過学習 (新しいデータ) と呼ばれます。この場合、機械学習モデルはトレーニング データのノイズに適合し、テスト データに対するモデルのパフォーマンスに悪影響を及ぼします。バイアスが低く分散が大きいと、過学習が発生する可能性があります。

機械学習における正則化とは何ですか?


5. 正則化の概念

「規則的な」という用語「」では、調整された損失関数を削減し、過剰適合または過小適合を回避するために機械学習モデルを調整する方法について説明します。

機械学習における正則化とは何ですか?


# 正則化手法を使用することで、機械学習モデルをより正確に適合させることができます。特定のテスト セットに効果的に適用することで、テスト セット内のエラーを効果的に削減します

#6.L1 正則化

#カラー回帰と比較して、L1 正則化の実装は主に損失関数にペナルティ項を追加することです。この項のペナルティ値は、次のようにすべての係数の絶対値の合計です。

機械学習における正則化とは何ですか?

Lasso 回帰モデルでは、回帰係数の絶対値を増やすことでペナルティが増加します。リッジ回帰項目と同様の方法で実現します。さらに、L1 正則化は、線形回帰モデルの精度を向上させる優れたパフォーマンスを発揮します。同時に、L1 正則化はすべてのパラメーターに均等にペナルティを課すため、一部の重みがゼロになる可能性があり、その結果、特定の特徴を削除できるスパース モデルが生成されます (重み 0 は削除と同等です)。

#7. L2 正則化

L2 正則化は、損失関数にペナルティ項を追加することによっても実現されます。ペナルティ項はすべての係数の二乗の合計に等しいということです。次のように:##############################

一般に、データが多重共線性 (独立変数の相関性が高い) を示す場合に採用される手法と考えられます。多重共線性における最小二乗推定 (OLS) は不偏ですが、分散が大きいため、観測値が実際の値と大きく異なる可能性があります。 L2 により、回帰推定の誤差がある程度減少します。通常、多重共線性の問題を解決するには収縮パラメーターを使用します。 L2 正則化により、重みの固定比率が減り、重みが平滑化されます。

8. 概要

上記の分析を経て、この記事の関連する正則化に関する知識は次のように要約されます。

##L1 正則化では、特徴の選択に使用できる疎な重み行列、つまり疎なモデルを生成できます;

L2 正則化では、モデルの過学習を防ぐことができます。ある程度、L1 は過学習を防止し、モデルの汎化能力を向上させることもできます。

L1 (ラグランジュ) 正則化では、パラメーターの事前分布がラプラス分布であると仮定し、モデルのスパース性を確保できます。つまり、一部のパラメータは 0 に等しくなります。

L2 (リッジ回帰) の仮定は、パラメータの事前分布がガウス分布であるということであり、これによりモデルの安定性が保証されます。

実際のアプリケーションでは、特徴が高次元で疎である場合は、L1 正則化を使用する必要があります。特徴が低次元で密である場合は、L1 正則化を使用する必要があります。 、L2 正規化を使用する必要があります

以上が機械学習における正則化とは何ですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

オープンソースの無料画像注釈ツールおすすめ 15 選 オープンソースの無料画像注釈ツールおすすめ 15 選 Mar 28, 2024 pm 01:21 PM

画像の注釈は、ラベルまたは説明情報を画像に関連付けて、画像の内容に深い意味と説明を与えるプロセスです。このプロセスは機械学習にとって重要であり、画像内の個々の要素をより正確に識別するために視覚モデルをトレーニングするのに役立ちます。画像に注釈を追加することで、コンピュータは画像の背後にあるセマンティクスとコンテキストを理解できるため、画像の内容を理解して分析する能力が向上します。画像アノテーションは、コンピュータ ビジョン、自然言語処理、グラフ ビジョン モデルなどの多くの分野をカバーする幅広い用途があり、車両が道路上の障害物を識別するのを支援したり、障害物の検出を支援したりするなど、幅広い用途があります。医用画像認識による病気の診断。この記事では主に、より優れたオープンソースおよび無料の画像注釈ツールをいくつか推奨します。 1.マケセンス

この記事では、SHAP: 機械学習のモデルの説明について説明します。 この記事では、SHAP: 機械学習のモデルの説明について説明します。 Jun 01, 2024 am 10:58 AM

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

透明!主要な機械学習モデルの原理を徹底的に分析! 透明!主要な機械学習モデルの原理を徹底的に分析! Apr 12, 2024 pm 05:55 PM

平たく言えば、機械学習モデルは、入力データを予測された出力にマッピングする数学関数です。より具体的には、機械学習モデルは、予測出力と真のラベルの間の誤差を最小限に抑えるために、トレーニング データから学習することによってモデル パラメーターを調整する数学関数です。機械学習には、ロジスティック回帰モデル、デシジョン ツリー モデル、サポート ベクター マシン モデルなど、多くのモデルがあります。各モデルには、適用可能なデータ タイプと問題タイプがあります。同時に、異なるモデル間には多くの共通点があったり、モデル進化の隠れた道が存在したりすることがあります。コネクショニストのパーセプトロンを例にとると、パーセプトロンの隠れ層の数を増やすことで、それをディープ ニューラル ネットワークに変換できます。パーセプトロンにカーネル関数を追加すると、SVM に変換できます。これです

学習曲線を通じて過学習と過小学習を特定する 学習曲線を通じて過学習と過小学習を特定する Apr 29, 2024 pm 06:50 PM

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

宇宙探査と人類居住工学における人工知能の進化 宇宙探査と人類居住工学における人工知能の進化 Apr 29, 2024 pm 03:25 PM

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 Jun 03, 2024 pm 01:25 PM

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

説明可能な AI: 複雑な AI/ML モデルの説明 説明可能な AI: 複雑な AI/ML モデルの説明 Jun 03, 2024 pm 10:08 PM

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります

あなたが知らない機械学習の 5 つの流派 あなたが知らない機械学習の 5 つの流派 Jun 05, 2024 pm 08:51 PM

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

See all articles