都市景観の変革: 人工知能の影響
AI とディープラーニングはすでにどこにでも普及しており、都市の景観を再構築する可能性を秘めています。景観画像を分析するディープラーニング モデルは、都市計画者が再開発計画を視覚化し、美観を向上させ、コストのかかる間違いを回避するのに役立ちます。ただし、これらのモデルが効果的であるためには、画像内の要素を正確に識別して分類する必要があり、これはインスタンス セグメンテーションとして知られる課題です。正確な「グラウンド トゥルース」画像ラベルの生成には労力を要する手動セグメンテーションが必要となるため、この課題は適切なトレーニング データが不足しているために発生します。しかし、最近の論文は、チームが答えを見つけた可能性があることを示唆しています。
人工知能による革新的な合成データの生成
大阪大学の研究者らは、人工知能ベースのコンピューター シミュレーションを使用して、大規模なデータを必要とするモデルをトレーニングしました。データの量が多くなり、この問題を解決するために考案された方法。彼らのアプローチには、都市の現実的な 3D モデルを作成して、グラウンド トゥルース セグメンテーションを生成することが含まれます。次に、画像間モデルは、グラウンド トゥルース データに基づいてリアルな画像を生成します。このプロセスにより、正確に生成されたグラウンド トゥルース ラベルを備えた実際の都市に似たリアルな画像データセットが得られ、手動によるセグメンテーションの必要がなくなります。
合成データはこれまでも深層学習に使用されてきましたが、そのアプローチは異なり、都市構造のシミュレーションを通じて現実世界のモデルに十分なトレーニング データを作成します。現実的な都市の 3D モデルを手続き的に生成し、ゲーム エンジンを使用してセグメント化された画像を作成することで、敵対的生成ネットワークをトレーニングして形状を現実的な都市のテクスチャを備えた画像に変換し、それによってストリート ビュー画像を生成できます。
利点と今後の展望
このアプローチにより、公開されている実際の建物のデータセットを使用する必要がなくなり、画像内で重なっている場合でも個々のオブジェクトを分離することができます。このアプローチにより、高品質のトレーニング データを生成しながら、人件費が大幅に削減されます。その有効性を検証するために、研究者らはシミュレートされたデータでセグメンテーション モデルをトレーニングし、実際のデータでトレーニングされたモデルと比較しました。その結果、AI モデルは大規模でユニークな建物を含むインスタンスでも同様に機能したが、データセットの準備時間が大幅に短縮されたことが示され、研究者らはさまざまな条件下で画像間モデルのパフォーマンスを向上させることを目指しました。彼らの成果は、トレーニング データの不足を解決するだけでなく、データセットの準備に関連するコストも削減し、深層学習を活用した都市景観の新時代への道を切り開きます。
以上が都市景観の変革: 人工知能の影響の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









データベース酸属性の詳細な説明酸属性は、データベーストランザクションの信頼性と一貫性を確保するための一連のルールです。データベースシステムがトランザクションを処理する方法を定義し、システムのクラッシュ、停電、または複数のユーザーの同時アクセスの場合でも、データの整合性と精度を確保します。酸属性の概要原子性:トランザクションは不可分な単位と見なされます。どの部分も失敗し、トランザクション全体がロールバックされ、データベースは変更を保持しません。たとえば、銀行の譲渡が1つのアカウントから控除されているが別のアカウントに増加しない場合、操作全体が取り消されます。 TRANSACTION; updateaccountssetbalance = balance-100wh

MySQLはJSONデータを返すことができます。 json_extract関数はフィールド値を抽出します。複雑なクエリについては、Where句を使用してJSONデータをフィルタリングすることを検討できますが、そのパフォーマンスへの影響に注意してください。 JSONに対するMySQLのサポートは絶えず増加しており、最新バージョンと機能に注意を払うことをお勧めします。

sqllimit句:クエリ結果の行数を制御します。 SQLの制限条項は、クエリによって返される行数を制限するために使用されます。これは、大規模なデータセット、パジネートされたディスプレイ、テストデータを処理する場合に非常に便利であり、クエリ効率を効果的に改善することができます。構文の基本的な構文:SelectColumn1、column2、... FromTable_nameLimitnumber_of_rows; number_of_rows:返された行の数を指定します。オフセットの構文:SelectColumn1、column2、... FromTable_nameLimitoffset、number_of_rows; offset:skip

MySQLデータベースパフォーマンス最適化ガイドリソース集約型アプリケーションでは、MySQLデータベースが重要な役割を果たし、大規模なトランザクションの管理を担当しています。ただし、アプリケーションのスケールが拡大すると、データベースパフォーマンスのボトルネックが制約になることがよくあります。この記事では、一連の効果的なMySQLパフォーマンス最適化戦略を検討して、アプリケーションが高負荷の下で効率的で応答性の高いままであることを保証します。実際のケースを組み合わせて、インデックス作成、クエリ最適化、データベース設計、キャッシュなどの詳細な主要なテクノロジーを説明します。 1.データベースアーキテクチャの設計と最適化されたデータベースアーキテクチャは、MySQLパフォーマンスの最適化の基礎です。いくつかのコア原則は次のとおりです。適切なデータ型を選択し、ニーズを満たす最小のデータ型を選択すると、ストレージスペースを節約するだけでなく、データ処理速度を向上させることもできます。

MySQLおよびMariaDBデータベースの効果的な監視は、最適なパフォーマンスを維持し、潜在的なボトルネックを特定し、システム全体の信頼性を確保するために重要です。 Prometheus MySQL Exporterは、プロアクティブな管理とトラブルシューティングに重要なデータベースメトリックに関する詳細な洞察を提供する強力なツールです。

MySQLプライマリキーは、データベース内の各行を一意に識別するキー属性であるため、空にすることはできません。主キーが空になる可能性がある場合、レコードを一意に識別することはできません。これにより、データの混乱が発生します。一次キーとして自己挿入整数列またはUUIDを使用する場合、効率やスペース占有などの要因を考慮し、適切なソリューションを選択する必要があります。

Hash値として保存されているため、Navicatを介してMongoDBパスワードを直接表示することは不可能です。紛失したパスワードを取得する方法:1。パスワードのリセット。 2。構成ファイルを確認します(ハッシュ値が含まれる場合があります)。 3.コードを確認します(パスワードをハードコードできます)。

SQLORDERBY句の詳細な説明:Data OrderBY句の効率的なソートは、クエリ結果セットをソートするために使用されるSQLの重要なステートメントです。単一の列または複数の列で昇順(ASC)または下降順序(DESC)で配置でき、データの読みやすさと分析効率を大幅に改善できます。 Orderby Syntax SelectColumn1、column2、... fromTable_nameOrderByColumn_name [asc | desc]; column_name:列ごとに並べ替えます。 ASC:昇順の注文ソート(デフォルト)。 DESC:降順で並べ替えます。 Orderbyの主な機能:マルチコラムソート:複数の列のソートをサポートし、列の順序によりソートの優先度が決まります。以来
