ヘルスケアにおける AI と ML の可能性を明らかにする
ヘルスケアでは、人工知能 (AI) と機械学習 (ML) が患者ケア、診断、治療に徐々に大きな進歩をもたらしています。これらの最先端のテクノロジーは医療業界に革命をもたらし、精度、効率、個別化されたケアを向上させました。病気の早期発見、高精度医療、医用画像処理の進歩、仮想医療アシスタント、創薬などは、これらのテクノロジーが医療の実践をどのように再構築しているかを示す例です。
人工知能と機械学習が発展するにつれて、業界はさらなる変革的な進歩を経験し、世界中の医療従事者に力を与え、患者に利益をもたらすでしょう。これらのテクノロジーを責任を持って倫理的に導入することで、医療提供者と患者は協力して人工知能と機械学習の可能性を最大限に引き出し、医療の未来を形作ることができます。
世界的パンデミックからの教訓
新型コロナウイルス感染症(COVID-19)の流行はほとんど前触れもなく発生し、テクノロジーはコミュニケーション、診断、治療、データセキュリティ、疫学において重要な役割を果たしました。ファイザーは人工知能と機械学習を利用して致死性ウイルスに対する最初のワクチンを開発し、12か月以内に評価され緊急使用が承認された。今後、人工知能と機械学習により、臨床試験がより迅速かつ正確になり、将来の潜在的な流行に先手を打つことができるようになります。
7月、流行対策イノベーション連合(CEPI)は、新興ウイルスを特定するヒューストン・メソジスト研究所主導の組織に500万ドル近くを拠出した。 5月、米国食品医薬品局(FDA)は、医薬品の開発と製造におけるAI/MLの可能性について論じた2つの論文を発表した。 FDA によると、AI/ML は「関係者が治療法を開発、製造、使用、評価する方法を変える可能性を秘めています。最終的には、AI/ML は安全で効果的で高品質の治療法をより迅速に患者に提供するのに役立ちます。」
ヘルスケアの問題の予測
多くのヘルスケア企業は、顧客のヘルスケアを改善するためにこれらのテクノロジーを活用しています。ジョンズ・ホプキンス大学では、従来の方法よりも迅速に患者の敗血症のリスクを検出するために人工知能システムが使用されています。ジョンズ・ホプキンス大学マローン・センター・フォー・ヘルスケア・エンジニアリングの創設研究ディレクターであるスーチ・サリア氏は、「人工知能がベッドサイドで使用されるのはこれが初めてであり、何千人もの医療提供者によって使用されており、私たちは命が救われているのを目の当たりにしている」と語った。 ."
このテクノロジーは、最終的には医療以外にも直接応用できる可能性があります。たとえば、Apple Watch はすでに人の心拍数、血圧、着用者に不規則なリズムがあるかどうかを監視できます。人工知能/機械学習の進歩により、この時計は、心臓発作が起こったときに着用者に通知し、医師に連絡するか緊急治療室に行くように指示するように訓練することもできます。
さらに、チャットボットや仮想保健アシスタントはリアルタイムで患者を支援できるようになります。たとえば、発熱した子供に解熱薬を服用する必要があるかどうか、子供の症状が緊急治療室に行く必要があるかどうかを判断します。 AI/ML モデルを通じて作成されたデータセットは、臨床試験を通じて世界的パンデミックに対処し、効果的なワクチンを開発し、潜在的な患者の問題を予測し、より効果的な診断を提供し、患者ケアを改善する上で重要になります。
SET PARAMETERS
AI/ML モデルの魅力の 1 つは、自己更新し、自ら学習できることです。クラウド コンピューティング能力がある限り、提供するデータが増え、AI との対話が増えるほど、モデルはより速く正確な答えを得ることができます。
最初に、データ サイエンス エンジニアはデータ セットのパラメーターを医療提供者に提供する必要があります。たとえば、履歴データと電子医療記録 (EHR) からの情報を使用して、特定の健康状態を持つ人々向けのトレーニング モデルを作成できます。これらのモデルはどの薬を使用するかを決定し、仮想アシスタントがそれらの処方箋と薬を生成できます。
もちろん、これは、これらのトレーニングが、医療保険相互運用性と説明責任法 (HIPAA)、患者プライバシー影響評価 (PIA)、個人を特定できる情報 (PII) を省略しないでください。モデルをトレーニングするとき、エンジニアは患者の年齢、性別、職業、病状のみを入力するようにする必要があります。これは、医療提供者がエンジニアに提供する情報に HIPAA または PIA 情報が含まれていないことを確認する責任があることを意味します。
心配を和らげる
依然として心配している人がいるのは当然です。医療提供者にとっての最大の懸念の 1 つはプライバシーです。プロバイダーは、データが社内外に流出しないように、組織に固有のトレーニング モデルを作成することが重要です。もう 1 つの大きな問題は、データの精度です。したがって、企業はトレーニング モデルの作成に必要な時間を費やすことが奨励されるべきです。 AI が正確な結果を生成して検証するまでに 3 ~ 6 か月かかる場合がありますが、企業がこれらの正確な結果を定期的に確認し始めると、モデルの予測にさらに自信を持てるようになります。
未来は今です
この新しいテクノロジーを受けている患者にとって、そこには人間の要素があり、必要に応じて医師や看護師に相談できることを知りたいと思っています。医療従事者、医師、看護師、研究者は、医療に不可欠な要素です。ヘルスケア産業は人類に直接影響を与えます。そのため、看護師、医師、臨床研究者だけでなく、モデルを作成するデータ エンジニアをトレーニングして、人工知能と機械学習、および過去のデータの適切な使用方法についての基本的な理解を得ることが同様に重要です。
業界における人工知能と機械学習が、より良い医療において大幅な進歩をもたらす可能性は刺激的で革新的であり、臨床試験研究の実施時間を短縮し、潜在的な援助をより迅速に市場に届けることができます。遠隔地の国や地域への配信を可能にし、患者の病気の予測精度を向上させます。この急速に進化するテクノロジーを業界で受け入れることは、サプライヤーと実務者の両方にとって重要です。
以上がヘルスケアにおける AI と ML の可能性を明らかにするの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

フロントエンド開発の世界では、VSCode はその強力な機能と豊富なプラグイン エコシステムにより、数多くの開発者に選ばれるツールとなっています。近年、人工知能技術の急速な発展に伴い、VSCode 上の AI コード アシスタントが登場し、開発者のコーディング効率が大幅に向上しました。 VSCode 上の AI コード アシスタントは雨後のキノコのように出現し、開発者のコーディング効率を大幅に向上させました。人工知能テクノロジーを使用してコードをインテリジェントに分析し、正確なコード補完、自動エラー修正、文法チェックなどの機能を提供することで、コーディング プロセス中の開発者のエラーや退屈な手作業を大幅に削減します。今日は、プログラミングの旅に役立つ 12 個の VSCode フロントエンド開発 AI コード アシスタントをお勧めします。
