目次
実現可能性検証
ホームページ テクノロジー周辺機器 AI ProAgent: OpenAI が主導するインテリジェントエージェントが人的資源を解放、清華大学などの大学がリリース

ProAgent: OpenAI が主導するインテリジェントエージェントが人的資源を解放、清華大学などの大学がリリース

Nov 14, 2023 pm 09:37 PM
データ 電車

ProAgent: OpenAI が主導するインテリジェントエージェントが人的資源を解放、清華大学などの大学がリリース

  • プロジェクトアドレス: https://github.com/OpenBMB/ProAgent
  • 論文アドレス: https://github.com/OpenBMB/ProAgent/blob/main/paper/paper.pdf

人間の発達においてテクノロジー 歴史を通じて、自動化は主な原動力であり、人間が複雑で危険で退屈な労働環境から解放されるのを助けてきました。初期の農業時代の水車灌漑から工業時代の蒸気機関に至るまで、人類は重労働から解放されるために、より高度な自動化技術を絶えず追求してきました。

情報化時代の到来とともに情報処理、ストレージ、通信の基盤としてのソフトウェアは、人間の生産と生活に切り離せない部分となっており、ロボット プロセス オートメーション (RPA) テクノロジーの形成を促進しています。手動でコンパイルされたルールを通じて複数のソフトウェアを統合されたワークフロー (ワークフロー) に調整し、ソフトウェアと対話して人間の対話をシミュレートすることで効率的な実行を実現します。

ProAgent: OpenAI が主導するインテリジェントエージェントが人的資源を解放、清華大学などの大学がリリース

#この図では、ロボティック プロセス オートメーション (RPA) とエージェント プロセス オートメーション (APA) を比較します。

RPA (ロボティック プロセス オートメーション) は、ソフトウェア ロボットまたは「BOT」を使用して、反復的かつ定期的なタスクをシミュレートして実行し、人的リソースを解放し、作業効率を向上させます。 RPAの適用範囲は非常に広いです。多くの企業 (銀行、保険会社、製造業、小売業、その他の業界を含む) は通常、RPA ロボットを使用して、データ入力、データ抽出、データ処理などの日常的で退屈なタスクを自動化します。タスクを自動化することで、RPA はエラー率を大幅に削減し、24 時間年中無休でタスクを実行できるため、ビジネスの信頼性と応答性が向上します。

#市場調査によると、RPA 市場は急速に成長しており、大きな成功を収めること。 Gartner は、世界の RPA 市場の収益は 2023 年までに 33 億米ドルに達し、成長率は 17.5% になると予測しています。これは、企業が RPA に対して非常に高い需要と認識を持っていることを示しています

ただし、RPA が代替できるのは単純で機械的な人間の作業のみであり、一部の複雑なプロセスは依然として手作業に依存しています:

    RPA ワークフローを記述すること自体に多大な人的労力が必要であり、コストがかかります。
  1. 複雑なタスクは非常に柔軟であり、通常は動的な意思決定が必要となるため、表現のルールに固めるのは困難です。

ProAgent: OpenAI が主導するインテリジェントエージェントが人的資源を解放、清華大学などの大学がリリース

図 2 RPA と APA の効率とインテリジェンスの比較

幸いなことに、 AI 分野における大規模言語モデル エージェント テクノロジ (大規模言語モデル ベースのエージェント、LLM ベースのエージェント) の最近の出現は、自動化テクノロジの新たな可能性を生み出す可能性があります。

エージェント テクノロジーの柔軟性を RPA 分野に導入して、人間の関与をさらに減らすことは可能ですか?

チームの研究では、大規模モデル エージェント時代の新しい自動化パラダイム「エージェント プロセス オートメーション」(APA) を調査しています。従来の RPA と比較して、APA パラダイムでは、エージェントは人間のニーズに応じて自律的にワークフローの構築を完了することができ、同時に人間のニーズのうち動的な意思決定が必要な部分を特定し、それらを自動的にワークフローに統合し、この部分はワークフローの実行を積極的に引き継ぎ、対応する複雑な決定を完了します。

APA の可能性を探るため、この研究作業では自動エージェント ProAgent を実装しました。ProAgent は人間の指示を受け取り、ワークフロー DataAgent および ControlAgent 内にありながらコードを生成することでワークフローを構築できます。ワークフローにおける複雑なデータ処理と論理制御を実現するために導入されています。 ProAgent の研究は、大規模モデル エージェントの時代における APA の実現可能性を実証し、LLM 時代における自動化テクノロジーの新たな可能性も明らかにしています。

メソッドの紹介

RPA では、ワークフローは一連のツール呼び出しで構成されるグラフ構造です。ノードはアトミックなツール呼び出し (たとえば、 Gmail、Twitter、Google Sheets など)、エッジは実行の論理シーケンス(接続、分岐、ループ)を表します。通常、ワークフローには、問題解決パスや例外処理ロジックなど、タスクまたはタスクの種類に関するすべての事前知識が含まれています。したがって、固定ワークフローを作成することは、多くの場合、非常に安定しており、徹底的かつ効率的です。

ProAgent: OpenAI が主導するインテリジェントエージェントが人的資源を解放、清華大学などの大学がリリース

#図 3 エージェント ワークフロー記述言語の例

ProAgent では、LLM 自体がコード データで事前にトレーニングされているため、強力なコーディング能力を習得したため、この研究はコードベースのエージェント ワークフロー記述言語に基づいています。この言語は、JSON を使用してワークフロー内のデータを整理および管理し、Python 構文を使用してワークフローの論理制御を実装します。制御フロー内のジャンプ、ループなどは Python 構文を通じて直接表現されますが、ワークフロー内のツールはcall は Python 関数としてカプセル化されます。そのため、ProAgent では、ワークフロー構築タスクがコード生成タスクに変換されます。 ProAgentは人間の指示を受けると、対応するAgentic Workflow description Languageを記述することでワークフロー構築の自動化を実現します。

ProAgent: OpenAI が主導するインテリジェントエージェントが人的資源を解放、清華大学などの大学がリリース

#図 4 DataAgent と ControlAgent を組み合わせたエージェント ワークフロー記述言語の例

複雑な現実のタスクには通常、次のようなものが含まれます。動的な意思決定、単純な Python スタイルのロジック制御ルールや JSON スタイルのデータ編成は、柔軟なニーズに対応する場合には役に立たないため、現時点ではエージェントを導入する必要があります。したがって、この研究作業では、2 つのエージェント操作をさらに定義します:

1. DataAgent: 複雑なデータ処理要件の場合、ワークフローの構築時に自然言語を使用して処理を記述します。次に、実行時に DataAgent を初期化し、自然言語記述に基づいてデータ処理タスクを自律的に処理して完了します。

ProAgent: OpenAI が主導するインテリジェントエージェントが人的資源を解放、清華大学などの大学がリリース

2. ControlAgent: ルールで表現するのが難しい論理的な制御ルールについては、ワークフローを構築するときに自然言語を使用して制御ロジックを記述します。その後、実行時に ControlAgent が初期化され、自然言語記述に基づいてワークフローの後半で実行する必要があるブランチを自律的に選択します。

ProAgent: OpenAI が主導するインテリジェントエージェントが人的資源を解放、清華大学などの大学がリリース#ProAgent は ReACT モードを使用してワークフローを段階的に構築します。これには 4 つのワークフロー構築ステップが含まれます:

Action_Define: ワークフローに追加するツールを決定します。
  1. アクションの実装: ツールの入出力パラメーターを JSON 構造に変換し、ツールの呼び出しを Python 関数にカプセル化します。
  2. ワークフローの実装: mainWorkflow 関数を定義して、ワークフロー全体のロジック制御とデータ処理を整理します。
  3. タスクの送信: ProAgent がワークフローの構築を完了すると、この操作により構築プロセスの終了が識別されます。

#この例では、ProAgent ワークフロー構築プロセスの図 5 を示しています。ProAgent: OpenAI が主導するインテリジェントエージェントが人的資源を解放、清華大学などの大学がリリース

さらに、 ProAgent の効果を最適化するために、いくつかの最適化テクニックが導入されています。

1.建設時のテスト: 建設プロセス中、ProAgent はテスト後にワークフローを変更します。ワークフローが正確であることを確認します。

  1. 関数呼び出し: ワークフロー構築のすべての操作が GPT-4 関数にカプセル化されるため、ワークフロー構築プロセスの制御が向上します。
  2. 思考連鎖: ProAgent がワークフロー コードを作成するときは、ProAgent ワークフロー構築のパフォーマンスを向上させるために、各関数にコメントと作成計画を与える必要があります。
  3. ワークフローの実行プロセスは、Python インタープリターに基づいています。ワークフローが指定されると、対応する mainWorkflow 関数が実行のエントリ ポイントとして使用され、実行プロセス全体が開始されます。実行プロセスは Python コードの実行ルールに従い、1 行ずつ順番に実行されます。 mainWorkflow 関数が戻ると、ワークフローの実行は正常に完了しました。

実現可能性検証

Agentic Process Automationの実現可能性を検証するために、本研究ではOpenAI GPT-4を基本モデルとして、オープンソースRPAプラットフォームn8nを基本モデルとして使用しています。通信事業者は、前述の ProAgent を実装します。同時に、柔軟性と効率性の両方が必要なタスクを設計しました。これは、Google スプレッドシートからさまざまな事業分野の利益データを抽出し、ビジネスが 2B か 2C かに基づいてその後のアクションを決定する必要がある典型的なビジネス シナリオです。事業分野が 2C であると判断されると、メッセージが Slack チャネルに送信されます。 2B の事業分野の場合、事業分野の評価と簡単な収益性の概要を含む電子メールが各マネージャーに送信されます。

ProAgent: OpenAI が主導するインテリジェントエージェントが人的資源を解放、清華大学などの大学がリリース

#図 6 タスク指示の表示

書き換える必要がある内容は次のとおりです。 , まず第一に、これは繰り返しの作業であり、複数の製品ラインに同じプロセスを採用する必要があります。第二に、事業ラインが 2C か 2B かを区別することは非常に困難であり、その後のワークフローを決定するにはエージェントによる動的な意思決定が必要です。最後に、ビジネスラインの評価メールを書くには、ある程度の知性が必要なので、エージェントの介入が必要です。

ProAgent 世代では、このタスクのために、4 つのプログラムが含まれています。アトミック操作が記述され、DataAgent と ControlAgent のワークフローが作成されました。全体的なプロセスは大まかに以下の図に示すとおりです。

ProAgent: OpenAI が主導するインテリジェントエージェントが人的資源を解放、清華大学などの大学がリリース図 7 ProAgent ワークフロー構築プロセスの表示

それがわかります。 ProAgent が自動的にコードを記述する方法により、手動介入なしでワークフロー構築プロセスが自動的に完了します。事業内容が2Bか2Cかを判断する必要がある場合、ProAgentはControlAgentを導入して判断するため、ControlAgentのプロンプトを「事業内容がtoCかtoBかを決定する」に設定します。事業分野が 2B の場合、ProAgent は DataAgent も導入します。そのタスクは、「利益の事業分野について提案を添えてメールを作成する」というタスクに設定されており、エージェントの知性を利用して実際の状況に基づいてメールを作成します。さまざまなビジネス分野のメール。

ワークフローを作成して固定すると、ワークフローは、効率的なデータ処理のために、さまざまなデータに応じてさまざまなロジックに自動的に分岐します。

ProAgent: OpenAI が主導するインテリジェントエージェントが人的資源を解放、清華大学などの大学がリリース

#図 8 ProAgent ワークフロー実行プロセスの表示

2C ビジネス ライン データを処理する場合、ControlAgent は次のことができます。事業分野の説明に基づいて現在の事業分野のタイプを判断し、コミュニケーションに Slack ツールを使用することを選択します。 2B ビジネスラインデータを処理する場合、DataAgent は電子メールを作成し、対応するマネージャーのメールボックスに送信できます。

概要

この調査では、新しいことを提案しています。自動化パラダイム - 大規模モデルの時代に適したエージェントティック プロセス オートメーションが開発されています。従来のロボティック プロセス オートメーション テクノロジーと比較して、エージェントティック プロセス オートメーションはワークフローの構築を自動化し、ワークフロー実行中の動的な意思決定の自動化を実現できます。この研究では、ProAgent もさらに開発され、自動化における大規模モデル エージェントの実現可能性と可能性が実験的に実証されました。将来的には、大型モデル エージェント テクノロジーが人間をより高いレベルの自動化を達成し、重労働から解放するのに役立つと私は信じています

チーム関連の研究

現在、研究チームは、次のような大規模なモデル エージェントの方向で多くの研究を実施しています。

    XAgent: 複雑な要素を解体できる超強力なモデル エージェント アプリケーション フレームワークタスクが自動的に実行され、効率的に実行されます。
  • プロジェクト アドレス: https://github.com/OpenBMB/XAgent
  • ChatDev: 複数のエージェントを使用できる共同開発フレームワークさまざまな役割を持つエージェントが連携して、ソフトウェア アプリケーションを自動的に開発します。
  • プロジェクト アドレス: https://github.com/OpenBMB/ChatDev
  • AgentVerse: 大規模なモデル駆動型エージェントのための汎用プラットフォーム。採用 さまざまなエージェントの専門家が協力して、ユーザーが複雑なタスクを解決できるよう支援します。
  • プロジェクトアドレス: https://github.com/OpenBMB/AgentVerse

以上がProAgent: OpenAI が主導するインテリジェントエージェントが人的資源を解放、清華大学などの大学がリリースの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

ddrescue を使用して Linux 上のデータを回復する ddrescue を使用して Linux 上のデータを回復する Mar 20, 2024 pm 01:37 PM

DDREASE は、ハード ドライブ、SSD、RAM ディスク、CD、DVD、USB ストレージ デバイスなどのファイル デバイスまたはブロック デバイスからデータを回復するためのツールです。あるブロック デバイスから別のブロック デバイスにデータをコピーし、破損したデータ ブロックを残して正常なデータ ブロックのみを移動します。 ddreasue は、回復操作中に干渉を必要としないため、完全に自動化された強力な回復ツールです。さらに、ddasue マップ ファイルのおかげでいつでも停止および再開できます。 DDREASE のその他の主要な機能は次のとおりです。 リカバリされたデータは上書きされませんが、反復リカバリの場合にギャップが埋められます。ただし、ツールに明示的に指示されている場合は切り詰めることができます。複数のファイルまたはブロックから単一のファイルにデータを復元します

オープンソース!ゾーイデプスを超えて! DepthFM: 高速かつ正確な単眼深度推定! オープンソース!ゾーイデプスを超えて! DepthFM: 高速かつ正確な単眼深度推定! Apr 03, 2024 pm 12:04 PM

0.この記事は何をするのですか?私たちは、多用途かつ高速な最先端の生成単眼深度推定モデルである DepthFM を提案します。従来の深度推定タスクに加えて、DepthFM は深度修復などの下流タスクでも最先端の機能を実証します。 DepthFM は効率的で、いくつかの推論ステップ内で深度マップを合成できます。この作品について一緒に読みましょう〜 1. 論文情報タイトル: DepthFM: FastMonocularDepthEstimationwithFlowMatching 著者: MingGui、JohannesS.Fischer、UlrichPrestel、PingchuanMa、Dmytr

Google は大喜び: JAX のパフォーマンスが Pytorch や TensorFlow を上回りました! GPU 推論トレーニングの最速の選択肢となる可能性があります Google は大喜び: JAX のパフォーマンスが Pytorch や TensorFlow を上回りました! GPU 推論トレーニングの最速の選択肢となる可能性があります Apr 01, 2024 pm 07:46 PM

Google が推進する JAX のパフォーマンスは、最近のベンチマーク テストで Pytorch や TensorFlow のパフォーマンスを上回り、7 つの指標で 1 位にランクされました。また、テストは最高の JAX パフォーマンスを備えた TPU では行われませんでした。ただし、開発者の間では、依然として Tensorflow よりも Pytorch の方が人気があります。しかし、将来的には、おそらくより大規模なモデルが JAX プラットフォームに基づいてトレーニングされ、実行されるようになるでしょう。モデル 最近、Keras チームは、ネイティブ PyTorch 実装を使用して 3 つのバックエンド (TensorFlow、JAX、PyTorch) をベンチマークし、TensorFlow を使用して Keras2 をベンチマークしました。まず、主流のセットを選択します

こんにちは、電気アトラスです!ボストン・ダイナミクスのロボットが復活、180度の奇妙な動きにマスク氏も恐怖 こんにちは、電気アトラスです!ボストン・ダイナミクスのロボットが復活、180度の奇妙な動きにマスク氏も恐怖 Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas は正式に電動ロボットの時代に突入します!昨日、油圧式アトラスが歴史の舞台から「涙ながらに」撤退したばかりですが、今日、ボストン・ダイナミクスは電動式アトラスが稼働することを発表しました。ボストン・ダイナミクス社は商用人型ロボットの分野でテスラ社と競争する決意を持っているようだ。新しいビデオが公開されてから、わずか 10 時間ですでに 100 万人以上が視聴しました。古い人が去り、新しい役割が現れるのは歴史的な必然です。今年が人型ロボットの爆発的な年であることは間違いありません。ネットユーザーは「ロボットの進歩により、今年の開会式は人間のように見え、人間よりもはるかに自由度が高い。しかし、これは本当にホラー映画ではないのか?」とコメントした。ビデオの冒頭では、アトラスは仰向けに見えるように地面に静かに横たわっています。次に続くのは驚くべきことです

iPhoneのセルラーデータインターネット速度が遅い:修正 iPhoneのセルラーデータインターネット速度が遅い:修正 May 03, 2024 pm 09:01 PM

iPhone のモバイル データ接続に遅延や遅い問題が発生していませんか?通常、携帯電話の携帯インターネットの強度は、地域、携帯ネットワークの種類、ローミングの種類などのいくつかの要因によって異なります。より高速で信頼性の高いセルラー インターネット接続を実現するためにできることがいくつかあります。解決策 1 – iPhone を強制的に再起動する 場合によっては、デバイスを強制的に再起動すると、携帯電話接続を含む多くの機能がリセットされるだけです。ステップ 1 – 音量を上げるキーを 1 回押して放します。次に、音量小キーを押して、もう一度放します。ステップ 2 – プロセスの次の部分は、右側のボタンを押し続けることです。 iPhone の再起動が完了するまで待ちます。セルラーデータを有効にし、ネットワーク速度を確認します。もう一度確認してください 修正 2 – データ モードを変更する 5G はより優れたネットワーク速度を提供しますが、信号が弱い場合はより適切に機能します

超知性の生命力が覚醒する!しかし、自己更新 AI の登場により、母親はデータのボトルネックを心配する必要がなくなりました。 超知性の生命力が覚醒する!しかし、自己更新 AI の登場により、母親はデータのボトルネックを心配する必要がなくなりました。 Apr 29, 2024 pm 06:55 PM

世界は狂ったように大きなモデルを構築していますが、インターネット上のデータだけではまったく不十分です。このトレーニング モデルは「ハンガー ゲーム」のようであり、世界中の AI 研究者は、データを貪欲に食べる人たちにどのように餌を与えるかを心配しています。この問題は、マルチモーダル タスクで特に顕著です。何もできなかった当時、中国人民大学学部のスタートアップチームは、独自の新しいモデルを使用して、中国で初めて「モデル生成データフィード自体」を実現しました。さらに、これは理解側と生成側の 2 つの側面からのアプローチであり、両方の側で高品質のマルチモーダルな新しいデータを生成し、モデル自体にデータのフィードバックを提供できます。モデルとは何ですか? Awaker 1.0 は、中関村フォーラムに登場したばかりの大型マルチモーダル モデルです。チームは誰ですか?ソフォンエンジン。人民大学ヒルハウス人工知能大学院の博士課程学生、ガオ・イージャオ氏によって設立されました。

Kuaishou バージョンの Sora「Ke Ling」がテスト用に公開されています。120 秒以上のビデオを生成し、物理学をより深く理解し、複雑な動きを正確にモデル化できます。 Kuaishou バージョンの Sora「Ke Ling」がテスト用に公開されています。120 秒以上のビデオを生成し、物理学をより深く理解し、複雑な動きを正確にモデル化できます。 Jun 11, 2024 am 09:51 AM

何?ズートピアは国産AIによって実現するのか?ビデオとともに公開されたのは、「Keling」と呼ばれる新しい大規模な国産ビデオ生成モデルです。 Sora も同様の技術的ルートを使用し、自社開発の技術革新を多数組み合わせて、大きく合理的な動きをするだけでなく、物理世界の特性をシミュレートし、強力な概念的結合能力と想像力を備えたビデオを制作します。データによると、Keling は、最大 1080p の解像度で 30fps で最大 2 分の超長時間ビデオの生成をサポートし、複数のアスペクト比をサポートします。もう 1 つの重要な点は、Keling は研究所が公開したデモやビデオ結果のデモンストレーションではなく、ショートビデオ分野のリーダーである Kuaishou が立ち上げた製品レベルのアプリケーションであるということです。さらに、主な焦点は実用的であり、白紙小切手を書かず、リリースされたらすぐにオンラインに移行することです。Ke Ling の大型モデルは Kuaiying でリリースされました。

テスラのロボットは工場で働く、マスク氏:手の自由度は今年22に達する! テスラのロボットは工場で働く、マスク氏:手の自由度は今年22に達する! May 06, 2024 pm 04:13 PM

テスラのロボット「オプティマス」の最新映像が公開され、すでに工場内で稼働可能となっている。通常の速度では、バッテリー(テスラの4680バッテリー)を次のように分類します:公式は、20倍の速度でどのように見えるかも公開しました - 小さな「ワークステーション」上で、ピッキング、ピッキング、ピッキング:今回は、それがリリースされたハイライトの1つビデオの内容は、オプティマスが工場内でこの作業を完全に自律的に行​​い、プロセス全体を通じて人間の介入なしに完了するというものです。そして、オプティマスの観点から見ると、自動エラー修正に重点を置いて、曲がったバッテリーを拾い上げたり配置したりすることもできます。オプティマスのハンドについては、NVIDIA の科学者ジム ファン氏が高く評価しました。オプティマスのハンドは、世界の 5 本指ロボットの 1 つです。最も器用。その手は触覚だけではありません

See all articles