学際的な理解とマルチスケールモデリングが可能な MIT LAMM が、微調整された大規模言語モデル MechGPT をリリース
編集者 | Radish Skin
過去数世紀にわたり、研究者はさまざまな知識分野を結び付ける方法を模索してきました。人工知能の出現により、私たちは分野間 (例: 力学と生物学)、または異なる分野 (例: 故障力学と芸術) 間の関係を探索する機会を得ることができました。
この目標を達成するために、MIT の研究者はMIT の原子分子力学研究所 (LAMM) は、微調整された大規模言語モデル (LLM) を使用して、マルチスケール材料の破損に関する関連知識のサブセットを取得します。
この方法の手順は、まず一般的なLLM を使用して、元のソースから質問と回答のペアを抽出し、LLM を微調整します。この微調整された MechGPT LLM 基本モデルを使用して一連の計算実験が行われ、知識の検索、さまざまな言語タスク、仮説生成、さまざまなドメイン間の知識の接続における機能を調査しました。
このモデルには、次のような一定の機能があります。トレーニングから知識を思い出すことはできませんが、研究者らは、LLM はオントロジー知識グラフを通じて構造的洞察を抽出するのにより意味があることを発見しました。これらの解釈可能なグラフ構造は、解釈的な洞察、新しい研究課題のフレームワーク、検索強化生成にも使用できる知識の視覚的表現を提供します。
この研究のタイトルは「MechGPT、スケール、専門分野、モダリティを越えて知識を結び付ける力学および材料モデリングのための言語ベースの戦略」で、2023 年 10 月 19 日に公開されました。 ##応用力学のレビュー"。
#図: 概略ワークフロー。 (出典: 論文)
ここで、LAMM 研究者は、力学および材料の研究開発で最近提案された LLM の使用を基礎にしており、Llama-2 ベースの OpenOrca-Platypus2-13B に基づく一般的な LLM を開発しました。 -材料破損のモデリング、マルチスケール モデリング、および関連分野に焦点を当てた調整された MechGPT モデル。
OpenOrca-Platypus2-13B モデルが選択されたのは、推論、論理、数学/科学、その他の分野などの主要なタスクで優れたパフォーマンスを発揮し、豊富で適用可能な主題の知識と一般概念、および効率的なコンピューティング機能を提供するためです。
LLM は科学分野で強力なアプリケーションを提供します。 LLM は、大量のデータと複雑なシステムを分析できることに加えて、力学や材料科学の分野で、機械的応力、温度、化学相互作用などのさまざまな条件下での材料の挙動をシミュレーションおよび予測するために使用されます。以前の研究で示されているように、分子動力学シミュレーションからの大規模なデータセットで LLM をトレーニングすることにより、研究者は新しい状況での材料の挙動を予測できるモデルを開発できるため、発見プロセスが加速され、実験的テストの必要性が減ります。
このようなモデルは、書籍や出版物などの科学文書の分析にも非常に効果的で、研究者が大量のデータから重要な情報や洞察を迅速に抽出できるようになります。これは、科学者がさまざまな概念やアイデア間の傾向、パターン、関係を特定し、さらなる研究のための新しい仮説やアイデアを生成するのに役立ちます。
以下の図をご覧ください。これは、MechGPT の構築に使用される自己回帰デコーダー トランスフォーマー アーキテクチャの概要です。 (出典: 論文)
ここでは、チームは後者の開発に焦点を当て、特に材料破損と関連するマルチスケール手法を対象とした、Transformer ベースの LLM ファミリの生成人工知能ツールである MechGPT の使用を検討しています。これらの戦略の可能性。
この研究で提案された戦略には、いくつかのステップが含まれています。 1 つ目は蒸留ステップです。このステップでは、研究者が LLM を使用して、生のデータ チャンク (1 つ以上の PDF ファイルなど) から抽出されたテキストから質問と回答のペアを生成します。次に、このデータを使用して、2 番目のステップでモデルを微調整します。この研究では、初期の MechGPT モデルも特別にトレーニングされ、材料破損の原子論的モデリングの分野における知識の検索、一般的な言語タスク、および仮説生成におけるその有用性が実証されました。
図:使用されたモデリング戦略の概要。 (出典: 論文)
この論文では、研究者が特定の言語モデリング戦略を採用してデータセットを生成し、ソースから知識を抽出し、新しいメカニズムとマテリアル データセットを活用してモデルをトレーニングする、包括的なモデリング戦略を紹介します。研究者らは、パラメータサイズが130億から700億の範囲で、コンテキストの長さが10,000トークンを超えるMechGPTの3つのバージョンを分析および議論し、一般論に続いて、研究者らはモデルを適用し、LLMの使用を含むさまざまな設定でそのパフォーマンスをテストしたオントロジー グラフの生成と、複数の分野にわたる複雑なトピックに関する洞察の開発、および複数の LLM が協力または相互に作用するエージェント モデリングのために、トピック領域または質問への回答に対するより深い洞察を生成する方法で対話します。
グラフ: 超音速破壊とタンパク質のアンフォールディング機構に関連した超弾性を関連付けるオントロジー知識グラフ表現の開発。 (出典: 論文)
同時に、チームはさらに、さまざまな抽象化レベルでの言語モデルと多粒子システムの間の概念的な比較を提供し、新しいフレームワークが普遍的な関係を抽出するものとしてどのようにみなされるかを説明しています。複雑なシステムを支配するメソッド。
書き直された内容: 上の画像は、LLM と複数粒子シミュレーションの間の概念的な類似性を示しています。 (出典: 論文)
全体として、この研究で発表された研究は、科学研究を進歩させ、特定の応用分野における複雑な問題を解決するのに役立つ、より強力で一般的な人工知能モデルの開発に貢献し、 -モデルのパフォーマンスの詳細な評価。すべてのモデルと同様に、それらは慎重に検証される必要があり、その有用性は、尋ねられる質問のコンテキスト、その長所と短所、および科学者が科学と工学を進歩させるのに役立つ広範なツールに依存します。
さらに、人工知能ツールは、科学的調査のツールとして、私たちの周囲の世界を理解し、モデル化し、設計するためのツールの集合として見なされなければなりません。人工知能ツールが急速に発展するにつれて、科学的文脈でのその応用は新たな機会をもたらし始めたばかりです。
論文リンク:
https://arxiv.org/ftp/arxiv/papers/ 2310/2310.10445.pdf関連レポート:
https://twitter.com/llama_index/status/1723379654550245719以上が学際的な理解とマルチスケールモデリングが可能な MIT LAMM が、微調整された大規模言語モデル MechGPT をリリースの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









でももしかしたら公園の老人には勝てないかもしれない?パリオリンピックの真っ最中で、卓球が注目を集めています。同時に、ロボットは卓球のプレーにも新たな進歩をもたらしました。先ほど、DeepMind は、卓球競技において人間のアマチュア選手のレベルに到達できる初の学習ロボット エージェントを提案しました。論文のアドレス: https://arxiv.org/pdf/2408.03906 DeepMind ロボットは卓球でどれくらい優れていますか?おそらく人間のアマチュアプレーヤーと同等です: フォアハンドとバックハンドの両方: 相手はさまざまなプレースタイルを使用しますが、ロボットもそれに耐えることができます: さまざまなスピンでサーブを受ける: ただし、ゲームの激しさはそれほど激しくないようです公園の老人。ロボット、卓球用

8月21日、2024年世界ロボット会議が北京で盛大に開催された。 SenseTimeのホームロボットブランド「Yuanluobot SenseRobot」は、全製品ファミリーを発表し、最近、世界初の家庭用チェスロボットとなるYuanluobot AIチェスプレイロボット - Chess Professional Edition(以下、「Yuanluobot SenseRobot」という)をリリースした。家。 Yuanluobo の 3 番目のチェス対局ロボット製品である新しい Guxiang ロボットは、AI およびエンジニアリング機械において多くの特別な技術アップグレードと革新を経て、初めて 3 次元のチェスの駒を拾う機能を実現しました。家庭用ロボットの機械的な爪を通して、チェスの対局、全員でのチェスの対局、記譜のレビューなどの人間と機械の機能を実行します。

もうすぐ学校が始まり、新学期を迎える生徒だけでなく、大型AIモデルも気を付けなければなりません。少し前、レディットはクロードが怠け者になったと不満を漏らすネチズンでいっぱいだった。 「レベルが大幅に低下し、頻繁に停止し、出力も非常に短くなりました。リリースの最初の週は、4 ページの文書全体を一度に翻訳できましたが、今では 0.5 ページの出力さえできません」 !」 https://www.reddit.com/r/ClaudeAI/comments/1by8rw8/something_just_feels_wrong_with_claude_in_the/ というタイトルの投稿で、「クロードには完全に失望しました」という内容でいっぱいだった。

北京で開催中の世界ロボット会議では、人型ロボットの展示が絶対的な注目となっているスターダストインテリジェントのブースでは、AIロボットアシスタントS1がダルシマー、武道、書道の3大パフォーマンスを披露した。文武両道を備えた 1 つの展示エリアには、多くの専門的な聴衆とメディアが集まりました。弾性ストリングのエレガントな演奏により、S1 は、スピード、強さ、正確さを備えた繊細な操作と絶対的なコントロールを発揮します。 CCTVニュースは、「書道」の背後にある模倣学習とインテリジェント制御に関する特別レポートを実施し、同社の創設者ライ・ジエ氏は、滑らかな動きの背後にあるハードウェア側が最高の力制御と最も人間らしい身体指標(速度、負荷)を追求していると説明した。など)、AI側では人の実際の動きのデータが収集され、強い状況に遭遇したときにロボットがより強くなり、急速に進化することを学習することができます。そしてアジャイル

貢献者はこの ACL カンファレンスから多くのことを学びました。 6日間のACL2024がタイのバンコクで開催されています。 ACL は、計算言語学と自然言語処理の分野におけるトップの国際会議で、国際計算言語学協会が主催し、毎年開催されます。 ACL は NLP 分野における学術的影響力において常に第一位にランクされており、CCF-A 推奨会議でもあります。今年の ACL カンファレンスは 62 回目であり、NLP 分野における 400 以上の最先端の作品が寄せられました。昨日の午後、カンファレンスは最優秀論文およびその他の賞を発表しました。今回の優秀論文賞は7件(未発表2件)、最優秀テーマ論文賞1件、優秀論文賞35件です。このカンファレンスでは、3 つの Resource Paper Award (ResourceAward) と Social Impact Award (

今日の午後、Hongmeng Zhixingは新しいブランドと新車を正式に歓迎しました。 8月6日、ファーウェイはHongmeng Smart Xingxing S9およびファーウェイのフルシナリオ新製品発表カンファレンスを開催し、パノラマスマートフラッグシップセダンXiangjie S9、新しいM7ProおよびHuawei novaFlip、MatePad Pro 12.2インチ、新しいMatePad Air、Huawei Bisheng Withを発表しました。レーザー プリンタ X1 シリーズ、FreeBuds6i、WATCHFIT3、スマート スクリーン S5Pro など、スマート トラベル、スマート オフィスからスマート ウェアに至るまで、多くの新しいオールシナリオ スマート製品を開発し、ファーウェイは消費者にスマートな体験を提供するフル シナリオのスマート エコシステムを構築し続けています。すべてのインターネット。宏孟志興氏:スマートカー業界のアップグレードを促進するための徹底的な権限付与 ファーウェイは中国の自動車業界パートナーと提携して、

ビジョンとロボット学習の緊密な統合。最近話題の1X人型ロボットNEOと合わせて、2つのロボットハンドがスムーズに連携して服をたたむ、お茶を入れる、靴を詰めるといった動作をしていると、いよいよロボットの時代が到来するのではないかと感じられるかもしれません。実際、これらの滑らかな動きは、高度なロボット技術 + 精緻なフレーム設計 + マルチモーダル大型モデルの成果です。有用なロボットは多くの場合、環境との複雑かつ絶妙な相互作用を必要とし、環境は空間領域および時間領域の制約として表現できることがわかっています。たとえば、ロボットにお茶を注いでもらいたい場合、ロボットはまずティーポットのハンドルを掴んで、お茶をこぼさないように垂直に保ち、次にポットの口がカップの口と揃うまでスムーズに動かす必要があります。 、そしてティーポットを一定の角度に傾けます。これ

Machine Power Report 編集者: Yang Wen AI ビデオ サークルの王になれるのは誰ですか?アメリカのテレビシリーズ「ゲーム・オブ・スローンズ」に「鉄の玉座」というものがあります。伝説によれば、それは最高の権威を象徴する敵が捨てた数千の剣を溶かした巨大なドラゴン「黒死病」によって作られたとされています。この鉄の椅子に座るために、主要な家族は争いと争いを始めました。 Sora の登場以来、AI ビデオ界では活発な「ゲーム オブ スローンズ」が立ち上がっています。このゲームの主なプレーヤーには、国内の Kuaishou Keling、ByteDream だけでなく、海の向こうの RunwayGen-3 や Luma も含まれます。およびZhimo。今日は、誰が AI ビデオサークルの「鉄の玉座」に座る資格があるかを評価して確認します。 -1- ヴィンセントビデオ
