ホームページ テクノロジー周辺機器 AI Microsoft、言語モデルの推論機能を強化する XOT テクノロジーを発表

Microsoft、言語モデルの推論機能を強化する XOT テクノロジーを発表

Nov 17, 2023 pm 05:45 PM
マイクロソフト 言語モデル AIモデル

微软推出 XOT 技术,加强语言模型的推理能力

11 月 15 日のニュース、マイクロソフトは最近、Google DeepMind の AlphaZero に触発された「Everything of Thought」 (XOT) と呼ばれる手法を開始しました。 コンパクトなニューラル ネットワークを使用して、推論能力を強化しますAIモデルの。

微软推出 XOT 技术,加强语言模型的推理能力

微软推出 XOT 技术,加强语言模型的推理能力

微软推出 XOT 技术,加强语言模型的推理能力

マイクロソフトは、ジョージア工科大学および華東師範大学と協力して、アルゴリズム 、強化学習 (強化学習) とモンテカルロ木検索 (MCTS) 機能を統合し、複雑な意思決定環境における問題解決の有効性をさらに向上させます。

このサイトからの注: Microsoft 研究チームは、XOT メソッドはなじみのない問題に対して言語モデルを拡張でき、Game of 24、8-Puzzle、Pocket Cube の厳密なテストで大幅に改善されたと述べています。結果は、XOT が他の方法よりも大幅に優れており、他の方法が失敗する問題も解決できることを示しています。ただし、XOT は 100% の信頼性を達成するわけではありません

微软推出 XOT 技术,加强语言模型的推理能力

#XOT フレームワークには次の重要な手順が含まれています:

    事前トレーニング フェーズ: MCTS モジュール効果的なメンタルサーチに関する専門知識を学ぶためのタスクに関する事前トレーニング。軽量ポリシーとバリュー ネットワークに基づく検索。アイデア検索: 推論中、事前トレーニングされた MCTS モジュールはポリシー/値ネットワークを使用して、LLM のアイデアの軌跡を効率的に探索および生成します。
  • 思考の修正: LLM は MCTS の思考をレビューし、誤りを特定します。改訂のアイデアは、追加の MCTS シミュレーションを通じて生成されました。
  • LLM 推論: 問題解決の最終ヒントとして、修正されたアイデアを LLM に提供します。
この Web サイトには論文のアドレス [

PDF] が添付されています。興味のあるユーザーは詳細を読むことができます。

以上がMicrosoft、言語モデルの推論機能を強化する XOT テクノロジーを発表の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

トークン化を 1 つの記事で理解しましょう! トークン化を 1 つの記事で理解しましょう! Apr 12, 2024 pm 02:31 PM

言語モデルは、通常は文字列の形式であるテキストについて推論しますが、モデルへの入力は数値のみであるため、テキストを数値形式に変換する必要があります。トークン化は自然言語処理の基本タスクであり、特定のニーズに応じて、連続するテキスト シーケンス (文、段落など) を文字シーケンス (単語、フレーズ、文字、句読点など) に分割できます。その中の単位はトークンまたはワードと呼ばれます。以下の図に示す具体的なプロセスに従って、まずテキスト文がユニットに分割され、次に単一の要素がデジタル化され (ベクトルにマッピングされ)、次にこれらのベクトルがエンコード用のモデルに入力され、最後に下流のタスクに出力され、さらに最終結果を取得します。テキストセグメンテーションは、テキストセグメンテーションの粒度に応じて Toke に分割できます。

Microsoft Edgeアップグレード:自動パスワード保存機能が禁止? !ユーザーはショックを受けました! Microsoft Edgeアップグレード:自動パスワード保存機能が禁止? !ユーザーはショックを受けました! Apr 19, 2024 am 08:13 AM

4 月 18 日のニュース: 最近、Canary チャネルを使用している Microsoft Edge ブラウザーの一部のユーザーが、最新バージョンにアップグレードした後、パスワードを自動的に保存するオプションが無効になっていることに気づいたと報告しました。調査の結果、これは機能のキャンセルではなく、ブラウザのアップグレード後の軽微な調整であることが判明しました。 Edge ブラウザを使用して Web サイトにアクセスする前に、Web サイトのログイン パスワードを保存するかどうかを尋ねるウィンドウがブラウザにポップアップ表示されるとユーザーが報告しました。保存を選択すると、Edge は次回ログインするときに保存されたアカウント番号とパスワードを自動的に入力するため、ユーザーは非常に便利になります。しかし、最新のアップデートはデフォルト設定を変更する微調整に似ています。ユーザーはパスワードを保存することを選択し、設定で保存されたアカウントとパスワードの自動入力を手動でオンにする必要があります。

Microsoft、Win11 8月累積アップデートをリリース:セキュリティの向上、ロック画面の最適化など。 Microsoft、Win11 8月累積アップデートをリリース:セキュリティの向上、ロック画面の最適化など。 Aug 14, 2024 am 10:39 AM

8 月 14 日のこのサイトのニュースによると、今日の 8 月のパッチ火曜日イベント日に、Microsoft は 22H2 および 23H2 用の KB5041585 更新プログラム、および 21H2 用の KB5041592 更新プログラムを含む、Windows 11 システム用の累積的な更新プログラムをリリースしました。 8 月の累積更新プログラムで上記の機器がインストールされた後、このサイトに添付されるバージョン番号の変更は次のとおりです。 21H2 機器のインストール後、機器のインストール後、バージョン番号は Build22000.314722H2 に増加しました。バージョン番号は Build22621.403723H2 に増加しました。 装置のインストール後、バージョン番号は Build22631.4037 に増加しました。 Windows 1121H2 の更新プログラムの主な内容は次のとおりです。 改善: 改善されました。

Microsoft Win11 の 7z および TAR ファイルを圧縮する機能は、24H2 バージョンから 23H2/22H2 バージョンにダウングレードされました Microsoft Win11 の 7z および TAR ファイルを圧縮する機能は、24H2 バージョンから 23H2/22H2 バージョンにダウングレードされました Apr 28, 2024 am 09:19 AM

4 月 27 日のこのサイトのニュースによると、Microsoft は今月初めに Windows 11 Build 26100 プレビュー バージョン アップデートを Canary チャネルと Dev チャネルにリリースしました。これは Windows 1124H2 アップデートの RTM バージョンの候補になると予想されています。新バージョンの主な変更点は、ファイルエクスプローラー、Copilotの統合、PNGファイルメタデータの編集、TARおよび7z圧縮ファイルの作成など。 @PhantomOfEarth は、Microsoft が TAR および 7z 圧縮ファイルの作成など、24H2 バージョン (ゲルマニウム) の一部の機能を 23H2/22H2 (ニッケル) バージョンに継承していることを発見しました。図に示すように、Windows 11 は TAR のネイティブ作成をサポートします。

Microsoft の全画面ポップアップは、Windows 10 ユーザーに急いで Windows 11 にアップグレードするよう促します Microsoft の全画面ポップアップは、Windows 10 ユーザーに急いで Windows 11 にアップグレードするよう促します Jun 06, 2024 am 11:35 AM

6 月 3 日のニュースによると、Microsoft はすべての Windows 10 ユーザーに全画面通知を積極的に送信し、Windows 11 オペレーティング システムへのアップグレードを奨励しています。この移行には、ハードウェア構成が新しいシステムをサポートしていないデバイスが含まれます。 2015 年以来、Windows 10 は市場シェアの 70% 近くを占め、Windows オペレーティング システムとしての優位性を確固たるものにしました。しかし、そのシェアは82%を大きく上回り、2021年に発売されるWindows 11のシェアを大きく上回っている。 Windows 11 は発売から 3 年近く経ちますが、市場への浸透はまだ遅いです。 Microsoft は、Windows 10 の技術サポートを 2025 年 10 月 14 日以降に終了すると発表しました。

Microsoft Edge ブラウザーのアップデート: ユーザー エクスペリエンスを向上させるために「画像のズームイン」機能を追加しました Microsoft Edge ブラウザーのアップデート: ユーザー エクスペリエンスを向上させるために「画像のズームイン」機能を追加しました Mar 21, 2024 pm 01:40 PM

3月21日のニュースによると、Microsoftは最近ブラウザ「Microsoft Edge」をアップデートし、実用的な「画像拡大」機能を追加した。 Edge ブラウザを使用している場合、ユーザーは画像を右クリックするだけで、ポップアップ メニューでこの新機能を簡単に見つけることができます。さらに便利なのは、ユーザーが画像の上にカーソルを置き、Ctrl キーをダブルクリックして、画像をズームインする機能をすぐに呼び出すこともできることです。編集者の理解によれば、新しくリリースされた Microsoft Edge ブラウザーは、Canary チャネルで新機能についてテストされています。安定版ブラウザでは、実用的な「画像拡大」機能も正式に開始し、より便利な画像閲覧体験をユーザーに提供しています。海外の科学技術メディアも注目

大規模なモデルをクラウドにデプロイするための 3 つの秘密 大規模なモデルをクラウドにデプロイするための 3 つの秘密 Apr 24, 2024 pm 03:00 PM

コンピレーション|Xingxuan によって制作|51CTO テクノロジー スタック (WeChat ID: blog51cto) 過去 2 年間、私は従来のシステムよりも大規模言語モデル (LLM) を使用した生成 AI プロジェクトに多く関与してきました。サーバーレス クラウド コンピューティングが恋しくなってきました。そのアプリケーションは、会話型 AI の強化から、さまざまな業界向けの複雑な分析ソリューションやその他の多くの機能の提供まで多岐にわたります。多くの企業は、パブリック クラウド プロバイダーが既製のエコシステムをすでに提供しており、それが最も抵抗の少ない方法であるため、これらのモデルをクラウド プラットフォームにデプロイしています。ただし、安くはありません。クラウドは、スケーラビリティ、効率、高度なコンピューティング機能 (オンデマンドで利用可能な GPU) などの他の利点も提供します。パブリック クラウド プラットフォームでの LLM の展開については、あまり知られていない側面がいくつかあります

フラッシュ アテンションは安定していますか?メタとハーバードは、モデルの重みの偏差が桁違いに変動していることを発見しました フラッシュ アテンションは安定していますか?メタとハーバードは、モデルの重みの偏差が桁違いに変動していることを発見しました May 30, 2024 pm 01:24 PM

MetaFAIR はハーバード大学と協力して、大規模な機械学習の実行時に生成されるデータの偏りを最適化するための新しい研究フレームワークを提供しました。大規模な言語モデルのトレーニングには数か月かかることが多く、数百、さらには数千の GPU を使用することが知られています。 LLaMA270B モデルを例にとると、そのトレーニングには合計 1,720,320 GPU 時間が必要です。大規模なモデルのトレーニングには、これらのワークロードの規模と複雑さにより、特有のシステム上の課題が生じます。最近、多くの機関が、SOTA 生成 AI モデルをトレーニングする際のトレーニング プロセスの不安定性を報告しています。これらは通常、損失スパイクの形で現れます。たとえば、Google の PaLM モデルでは、トレーニング プロセス中に最大 20 回の損失スパイクが発生しました。数値的なバイアスがこのトレーニングの不正確さの根本原因です。

See all articles