C++のソート関数の詳細説明
C の sort 関数は、配列またはコンテナー内の要素を並べ替えるために使用される関数関数です。ソートは昇順または降順が可能で、整数、浮動小数点、文字型などさまざまな種類のデータをソートできます。 C言語には複数のソート関数が用意されていますが、今回はこれらのソート関数の使い方や特徴を詳しく紹介します。
- sort() 関数
sort() 関数は、C STL で最もよく使用される並べ替え関数の 1 つであり、その機能は要素を配列に配置することです。またはコンテナです。 sort() 関数の基本的な使い方は次のとおりです。
sort(begin, end);
このうち、begin は配列またはコンテナの最初の要素のアドレス、end は最後の要素のアドレス 1 なので、end最後の要素の後の空のアドレスを指します。 sort() 関数はデフォルトで昇順でソートしますが、降順でソートする必要がある場合は、関数ポインタまたはラムダ式を 3 番目のパラメータとして渡すことができます。
以下は、sort() 関数を使用して整数配列を並べ替える方法を示すサンプル コードです。
#include <iostream> #include <algorithm> using namespace std; int main() { int arr[] = {5, 2, 9, 1, 4, 3, 8, 6, 7}; int n = sizeof(arr) / sizeof(arr[0]); sort(arr, arr + n); for (int i = 0; i < n; i++) { cout << arr[i] << " "; } return 0; }
上記のコードを実行した結果は次のとおりです。
1 2 3 4 5 6 7 8 9
- stable_sort() 関数
stable_sort() 関数は sort() 関数に似ていますが、同じ値を持つ要素の相対位置がソート後も変更されないようにします。 steady_sort() 関数の使用法は sort() 関数に似ており、関数ポインターまたはラムダ式を 3 番目のパラメーターとして渡すこともできます。以下はサンプル コードです:
#include <iostream> #include <algorithm> using namespace std; int main() { int arr[] = {5, 2, 9, 1, 4, 3, 8, 6, 7}; int n = sizeof(arr) / sizeof(arr[0]); stable_sort(arr, arr + n); for (int i = 0; i < n; i++) { cout << arr[i] << " "; } return 0; }
上記のコードを実行した結果は次のとおりです:
1 2 3 4 5 6 7 8 9
- partial_sort() function
partial_sort( ) 関数は配列を変換できます。または、コンテナー内の要素が部分的にソートされています。つまり、上位 k 個の最小要素が配列の前にソートされます (または、上位 k 個の最大要素が配列の前にソートされます)。使用法は次のとおりです:
partial_sort(begin, middle, end);
begin は配列またはコンテナ内の最初の要素のアドレス、end は最後の要素のアドレス 1、middle は k 番目の要素を指す反復子です。 。 Partial_sort() 関数は、最初の k 個の要素が順序どおりであることのみを保証し、残りの要素の順序は未定義であることに注意してください。以下はサンプル コードです。
#include <iostream> #include <algorithm> using namespace std; int main() { int arr[] = {5, 2, 9, 1, 4, 3, 8, 6, 7}; int n = sizeof(arr) / sizeof(arr[0]); int k = 3; partial_sort(arr, arr + k, arr + n); for (int i = 0; i < k; i++) { cout << arr[i] << " "; } return 0; }
上記のコードを実行した結果は次のとおりです。
1 2 3
- nth_element() function
nth_element( ) 関数は、コンテナ内の配列または k 番目に小さい (または k 番目に大きい) 要素を選択し、それを配列内の k 番目の位置に配置するために使用されます。使用法は次のとおりです:
nth_element(begin, middle, end);
begin は配列またはコンテナ内の最初の要素のアドレス、end は最後の要素のアドレス 1、middle は k 番目の要素を指す反復子です。 。 nth_element() 関数は、配列の最初の k 要素が順序付けされていることのみを保証し、k 番目の要素は並べ替えられていないことに注意してください。以下はサンプル コードです。
#include <iostream> #include <algorithm> using namespace std; int main() { int arr[] = {5, 2, 9, 1, 4, 3, 8, 6, 7}; int n = sizeof(arr) / sizeof(arr[0]); int k = 3; nth_element(arr, arr + k - 1, arr + n); cout << "第 " << k << " 小的数是:" << arr[k - 1] << endl; return 0; }
上記のコードを実行した結果は次のとおりです。
第 3 小的数是:3
- make_heap() function
make_heap( ) 関数は配列を変換できます。または、コンテナーがヒープに変換されます。つまり、配列内の要素は、ヒープ操作をサポートするためにバイナリ ヒープの規則に従って並べ替えられます。使用法は次のとおりです:
make_heap(begin, end);
begin は配列またはコンテナの最初の要素のアドレス、end は最後の要素 1 のアドレスです。以下はサンプル コードです:
#include <iostream> #include <algorithm> using namespace std; int main() { int arr[] = {5, 2, 9, 1, 4, 3, 8, 6, 7}; int n = sizeof(arr) / sizeof(arr[0]); make_heap(arr, arr + n); for (int i = 0; i < n; i++) { cout << arr[i] << " "; } return 0; }
上記のコードを実行した結果は次のとおりです:
9 7 8 6 4 3 5 1 2
- push_heap() function
push_heap( ) 関数は、新しい要素をヒープに挿入し、ヒープのプロパティに合わせてヒープの構造を再構築します。使用法は次のとおりです。
push_heap(begin, end);
begin は配列またはコンテナ内の最初の要素のアドレス、end は最後の要素のアドレスです。挿入された新しい要素はヒープの最後の位置に配置される必要があることに注意してください。以下はサンプル コードです。
#include <iostream> #include <algorithm> using namespace std; int main() { int arr[] = {5, 2, 9, 1, 4, 3, 8, 6, 7}; int n = sizeof(arr) / sizeof(arr[0]); make_heap(arr, arr + n); arr[n] = 0; push_heap(arr, arr + n + 1); for (int i = 0; i < n + 1; i++) { cout << arr[i] << " "; } return 0; }
上記のコードを実行した結果は次のとおりです。
9 7 8 6 4 3 5 1 2 0
- pop_heap() function
pop_heap( ) 関数はヒープを変換するために使用されます。最上位の要素が飛び出し、ヒープの性質に合わせてヒープが再構築されます。使用法は次のとおりです。
pop_heap(begin, end);
begin は配列またはコンテナ内の最初の要素のアドレス、end は最後の要素のアドレスです。ヒープの最上位要素をポップした後、ヒープのサイズを 1 減らす必要があることに注意してください。以下はサンプル コードです。
#include <iostream> #include <algorithm> using namespace std; int main() { int arr[] = {5, 2, 9, 1, 4, 3, 8, 6, 7}; int n = sizeof(arr) / sizeof(arr[0]); make_heap(arr, arr + n); pop_heap(arr, arr + n); n--; for (int i = 0; i < n; i++) { cout << arr[i] << " "; } return 0; }
上記のコードを実行した結果は次のとおりです。
8 7 5 6 4 3 2 1
- sort_heap() function
sort_heap( ) 関数は、ヒープ Sort をソートし、ソートされた配列が昇順であることを確認するために使用されます。使用法は次のとおりです。
sort_heap(begin, end);
begin は配列またはコンテナ内の最初の要素のアドレス、end は最後の要素のアドレスです。 sort_heap() 関数は、ヒープをソートする前に、まず、pop_heap() 関数を呼び出してヒープの先頭要素をポップするため、ソートされた配列のサイズは 1 減らされる必要があることに注意してください。以下はサンプル コードです:
#include <iostream> #include <algorithm> using namespace std; int main() { int arr[] = {5, 2, 9, 1, 4, 3, 8, 6, 7}; int n = sizeof(arr) / sizeof(arr[0]); make_heap(arr, arr + n); sort_heap(arr, arr + n); for (int i = 0; i < n; i++) { cout << arr[i] << " "; } return 0; }
上記のコードを実行した結果は次のとおりです:
1 2 3 4 5 6 7 8 9
概要
この記事では、C の一般的な並べ替え関数について詳しく紹介します。これには、sort()、stable_sort()、partial_sort()、nth_element()、make_heap()、push_heap()、pop_heap()、sort_heap() 関数が含まれます。これらの仕分け機能にはそれぞれ独自の特徴があり、さまざまな仕分けニーズに対応できます。実際のプログラミングでは、特定の状況に応じて適切なソート関数を選択することが非常に重要です。
以上がC++のソート関数の詳細説明の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











C#とCの歴史と進化はユニークであり、将来の見通しも異なります。 1.Cは、1983年にBjarnestrostrupによって発明され、オブジェクト指向のプログラミングをC言語に導入しました。その進化プロセスには、C 11の自動キーワードとラムダ式の導入など、複数の標準化が含まれます。C20概念とコルーチンの導入、将来のパフォーマンスとシステムレベルのプログラミングに焦点を当てます。 2.C#は2000年にMicrosoftによってリリースされました。CとJavaの利点を組み合わせて、その進化はシンプルさと生産性に焦点を当てています。たとえば、C#2.0はジェネリックを導入し、C#5.0は非同期プログラミングを導入しました。これは、将来の開発者の生産性とクラウドコンピューティングに焦点を当てます。

Visual Studioコード(VSCODE)でコードを作成するのはシンプルで使いやすいです。 VSCODEをインストールし、プロジェクトの作成、言語の選択、ファイルの作成、コードの書き込み、保存して実行します。 VSCODEの利点には、クロスプラットフォーム、フリーおよびオープンソース、強力な機能、リッチエクステンション、軽量で高速が含まれます。

Golangは並行性がCよりも優れていますが、Cは生の速度ではGolangよりも優れています。 1)Golangは、GoroutineとChannelを通じて効率的な並行性を達成します。これは、多数の同時タスクの処理に適しています。 2)Cコンパイラの最適化と標準ライブラリを介して、極端な最適化を必要とするアプリケーションに適したハードウェアに近い高性能を提供します。

GolangとCにはそれぞれパフォーマンス競争において独自の利点があります。1)Golangは、高い並行性と迅速な発展に適しており、2)Cはより高いパフォーマンスと微細な制御を提供します。選択は、プロジェクトの要件とチームテクノロジースタックに基づいている必要があります。

GolangとCのパフォーマンスの違いは、主にメモリ管理、コンピレーションの最適化、ランタイム効率に反映されています。 1)Golangのゴミ収集メカニズムは便利ですが、パフォーマンスに影響を与える可能性があります。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

コードでコードを実行すると、コードが6つしか必要ありません。1。プロジェクトを開きます。 2。コードファイルを作成して書き込みます。 3.端子を開きます。 4.プロジェクトディレクトリに移動します。 5。適切なコマンドを使用してコードを実行します。 6。出力を表示します。

Golangは迅速な発展と同時シナリオに適しており、Cは極端なパフォーマンスと低レベルの制御が必要なシナリオに適しています。 1)Golangは、ごみ収集と並行機関のメカニズムを通じてパフォーマンスを向上させ、高配列Webサービス開発に適しています。 2)Cは、手動のメモリ管理とコンパイラの最適化を通じて究極のパフォーマンスを実現し、埋め込みシステム開発に適しています。
