分析MySQL中索引引引发的CPU负载飙升的问题_MySQL
收到一个mysql服务器负载告警,上去一看,load average都飙到280多了,用top一看,CPU跑到了336%,不过IO和内存的负载并不高,根据经验,应该又是一起索引引起的惨案了。
看下processlist以及slow query情况,发现有一个SQL经常出现,执行计划中的扫描记录数看着还可以,单次执行耗时为0.07s,还不算太大。乍一看,可能不是它引发的,但出现频率实在太高,而且执行计划看起来也不够完美:
mysql> explain SELECT count(1) FROM a , b WHERE a.id = b.video_id and b.state = 1 AND b.column_id = '81'\G
*************************** 1. row *************************** id: 1 select_type: SIMPLE table: b type: index_merge possible_keys: columnid_videoid,column_id,state,video_time_stamp,idx_videoid key: column_id,state key_len: 4,4 ref: NULL rows: 100 Extra: Using intersect(column_id,state); Using where *************************** 2. row *************************** id: 1 select_type: SIMPLE table: a type: eq_ref possible_keys: PRIMARY key: PRIMARY key_len: 4 ref: b.video_id rows: 1 Extra: Using where; Using index
再看下该表的索引情况:
mysql> show index from b\G
*************************** 1. row *************************** Table: b Non_unique: 0 Key_name: PRIMARY Seq_in_index: 1 Column_name: id Collation: A Cardinality: 167483 Sub_part: NULL Packed: NULL Null: Index_type: BTREE Comment: Index_comment: *************************** 2. row *************************** Table: b Non_unique: 1 Key_name: column_id Seq_in_index: 1 Column_name: column_id Collation: A Cardinality: 8374 Sub_part: NULL Packed: NULL Null: Index_type: BTREE Comment: Index_comment: *************************** 3. row *************************** Table: b Non_unique: 1 Key_name: state Seq_in_index: 2 Column_name: state Collation: A Cardinality: 5 Sub_part: NULL Packed: NULL Null: Index_type: BTREE Comment: Index_comment:
可以看到执行计划中,使用的是index merge,效率自然没有用联合索引(也有的叫做覆盖索引)来的好了,而且 state 字段的基数(唯一性)太差,索引效果很差。删掉两个独立索引,修改成联合看看效果如何:
mysql> show index from b;
*************************** 1. row *************************** Table: b Non_unique: 0 Key_name: PRIMARY Seq_in_index: 1 Column_name: id Collation: A Cardinality: 128151 Sub_part: NULL Packed: NULL Null: Index_type: BTREE Comment: Index_comment: *************************** 2. row *************************** Table: b Non_unique: 1 Key_name: idx_columnid_state Seq_in_index: 1 Column_name: column_id Collation: A Cardinality: 3203 Sub_part: NULL Packed: NULL Null: Index_type: BTREE Comment: Index_comment: *************************** 3. row *************************** Table: b Non_unique: 1 Key_name: idx_columnid_state Seq_in_index: 2 Column_name: state Collation: A Cardinality: 3463 Sub_part: NULL Packed: NULL Null: Index_type: BTREE Comment: Index_comment: mysql> explain SELECT count(1) FROM a , b WHERE a.id = b.video_id and b.state = 1 AND b.column_id = '81' \G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: b type: ref possible_keys: columnid_videoid,idx_videoid,idx_columnid_state key: columnid_videoid key_len: 4 ref: const rows: 199 Extra: Using where *************************** 2. row *************************** id: 1 select_type: SIMPLE table: a type: eq_ref possible_keys: PRIMARY key: PRIMARY key_len: 4 ref: b.video_id rows: 1 Extra: Using where; Using index
可以看到执行计划变成了只用到了 idx_columnid_state 索引,而且 ref 类型也变成了 const,SQL执行耗时也从0.07s变成了0.00s,相应的CPU负载也从336%突降到了12%不到。
总结下,从多次历史经验来看,如果CPU负载持续很高,但内存和IO都还好的话,这种情况下,首先想到的一定是索引问题,十有八九错不了。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック

ビッグ データ構造の処理スキル: チャンキング: データ セットを分割してチャンクに処理し、メモリ消費を削減します。ジェネレーター: データ セット全体をロードせずにデータ項目を 1 つずつ生成します。無制限のデータ セットに適しています。ストリーミング: ファイルやクエリ結果を 1 行ずつ読み取ります。大きなファイルやリモート データに適しています。外部ストレージ: 非常に大規模なデータ セットの場合は、データをデータベースまたは NoSQL に保存します。

PHP で MySQL データベースをバックアップおよび復元するには、次の手順を実行します。 データベースをバックアップします。 mysqldump コマンドを使用して、データベースを SQL ファイルにダンプします。データベースの復元: mysql コマンドを使用して、SQL ファイルからデータベースを復元します。

MySQL クエリのパフォーマンスは、検索時間を線形の複雑さから対数の複雑さまで短縮するインデックスを構築することで最適化できます。 PreparedStatement を使用して SQL インジェクションを防止し、クエリのパフォーマンスを向上させます。クエリ結果を制限し、サーバーによって処理されるデータ量を削減します。適切な結合タイプの使用、インデックスの作成、サブクエリの使用の検討など、結合クエリを最適化します。クエリを分析してボトルネックを特定し、キャッシュを使用してデータベースの負荷を軽減し、オーバーヘッドを最小限に抑えます。

MySQLテーブルにデータを挿入するにはどうすればよいですか?データベースに接続する: mysqli を使用してデータベースへの接続を確立します。 SQL クエリを準備します。挿入する列と値を指定する INSERT ステートメントを作成します。クエリの実行: query() メソッドを使用して挿入クエリを実行します。成功すると、確認メッセージが出力されます。

PHP で MySQL ストアド プロシージャを使用するには: PDO または MySQLi 拡張機能を使用して、MySQL データベースに接続します。ストアド プロシージャを呼び出すステートメントを準備します。ストアド プロシージャを実行します。結果セットを処理します (ストアド プロシージャが結果を返す場合)。データベース接続を閉じます。

PHP を使用して MySQL テーブルを作成するには、次の手順が必要です。 データベースに接続します。データベースが存在しない場合は作成します。データベースを選択します。テーブルを作成します。クエリを実行します。接続を閉じます。

MySQL 8.4 (2024 年時点の最新の LTS リリース) で導入された主な変更の 1 つは、「MySQL Native Password」プラグインがデフォルトで有効ではなくなったことです。さらに、MySQL 9.0 ではこのプラグインが完全に削除されています。 この変更は PHP および他のアプリに影響します

Oracle データベースと MySQL はどちらもリレーショナル モデルに基づいたデータベースですが、Oracle は互換性、スケーラビリティ、データ型、セキュリティの点で優れており、MySQL は速度と柔軟性に重点を置いており、小規模から中規模のデータ セットに適しています。 ① Oracle は幅広いデータ型を提供し、② 高度なセキュリティ機能を提供し、③ エンタープライズレベルのアプリケーションに適しています。① MySQL は NoSQL データ型をサポートし、② セキュリティ対策が少なく、③ 小規模から中規模のアプリケーションに適しています。
