目次
Phi-2 の主なハイライト
トレーニングの詳細
実験的評価
ホームページ テクノロジー周辺機器 AI 携帯電話は、27 億個のパラメータを備えた大型モデルよりも Microsoft の小型モデルをより適切に実行します

携帯電話は、27 億個のパラメータを備えた大型モデルよりも Microsoft の小型モデルをより適切に実行します

Dec 14, 2023 pm 10:45 PM
データ モデル

Microsoft CEO の Nadella は、先月の Ignite カンファレンスで、Phi-2 小規模モデルが完全にオープンソースになると発表しました。この動きにより、常識的推論、言語理解、論理的推論のパフォーマンスが大幅に向上します

携帯電話は、27 億個のパラメータを備えた大型モデルよりも Microsoft の小型モデルをより適切に実行します

本日、Microsoft は Phi-2 モデルの詳細を発表しました。そして新しいプロンプト技術プロンプトベース。わずか 27 億のパラメーターを備えたこのモデルは、Llama2 7B、Llama2 13B、Mistral 7B を上回るパフォーマンスを発揮し、ほとんどの常識的な推論、言語理解、数学、およびコーディング タスクに関して Llama2 70B との差を縮めます (またはさらに優れています)。

同時に、小型 Phi-2 はラップトップや携帯電話などのモバイル デバイス上で実行できます。 Nadella 氏は、Microsoft はクラス最高の小型言語モデル (SLM) と SOTA プロンプト テクノロジを研究開発開発者と共有できることを非常に嬉しく思っていると述べました。

携帯電話は、27 億個のパラメータを備えた大型モデルよりも Microsoft の小型モデルをより適切に実行します

Microsoft は、今年 6 月に「教科書のみ」という論文を発表しました。これは、7B タグの品質データのみを含む「教科書」を使用して、学習者をトレーニングするものです。 1.3B パラメータを含むモデル、つまり phi-1。 phi-1 は、競合他社よりも桁違いに小さいデータセットとモデル サイズを備えているにもかかわらず、HumanEval で 50.6% の初回合格率、MBPP で 55.5% の精度を達成しています。 phi-1 は、高品質の「小さなデータ」でも優れたモデルのパフォーマンスにつながる可能性があることを証明しました

Microsoft はその後、9 月のテクニカル レポートで「Just a Textbook II: Phi-1.5」を発行しました。高品質の「スモールデータ」の可能性についてのさらなる研究。この記事では、QA Q&A、コーディング、その他のシナリオに適しており、13 億の規模に達することができる Phi-1.5 を提案しています。

現在、再び 27 億のパラメーターを備えた Phi-2 が提案されています。 「小さな体」を使用すると、優れた推論能力と言語理解能力が得られ、130 億パラメータ以下の基本言語モデルで SOTA パフォーマンスが実証されます。モデルのスケーリングとトレーニング データ管理の革新のおかげで、Phi-2 は、複雑なベンチマークで 25 倍のサイズのモデルと同等またはそれを超えています。

Microsoft は、Phi-2 は研究者にとって、解釈可能性の調査、セキュリティの改善、さまざまなタスクの微調整実験を行うための理想的なモデルになると述べています。 Microsoft は、言語モデルの開発を容易にするために、Azure AI Studio モデル カタログで Phi-2 を利用できるようにしました。

Phi-2 の主なハイライト

言語モデルの規模は数千億のパラメーターに増加し、実際に多くの新しい機能がリリースされました。機能と再定義された性質、言語処理の風景。しかし、疑問は残ります。これらの新しい機能は、トレーニング戦略の選択 (データ選択など) を通じて、より小規模なモデルでも実現できるのでしょうか?

Microsoft が提供するソリューションは、Phi シリーズのモデルを使用して、小さな言語モデルをトレーニングすることで大規模なモデルと同様のパフォーマンスを達成することです。 Phi-2 は、2 つの側面で従来の言語モデルのスケーリング ルールを打ち破ります。

まず、トレーニング データの品質がモデルのパフォーマンスに重要な役割を果たします。 Microsoft は、「教科書品質」のデータに焦点を当てることで、この理解を極限まで高めています。彼らのトレーニング データは、モデルに科学、日常活動、心理学などの常識的な知識と推論を教える特別に作成された包括的なデータセットで構成されています。さらに、教育的価値とコンテンツの品質を審査した慎重に選択された Web データを使用してトレーニング コーパスをさらに拡張します。

第 2 に、Microsoft は革新的なテクノロジを使用して拡張します。 13 億のパラメータ、知識は 27 億のパラメータを備えた Phi-2 に徐々に埋め込まれました。このスケールされた知識の移転により、トレーニングの収束が加速され、Phi-2 のベンチマーク スコアが大幅に向上します。

以下は、BBH (3 ショット CoT) と MMLU (5 ショット) を除く他のすべてのタスクの Phi-2 と Phi-1.5 の比較グラフです。0 ショットを使用した評価

携帯電話は、27 億個のパラメータを備えた大型モデルよりも Microsoft の小型モデルをより適切に実行します

トレーニングの詳細

Phi-2 は Transformer ベースのモデルであり、その目標は予測することです。次の言葉。これは、96 個の A100 GPU を使用して合成データセットとネットワーク データセットでトレーニングされ、14 日間かかりました。

Phi-2 は基本モデルであり、失敗しました。ヒューマン フィードバックによる強化学習 (RLHF) はアライメントを実行し、命令の微調整は実行しません。それにもかかわらず、以下の図 3 に示すように、Phi-2 は、調整された既存のオープンソース モデルと比較して、毒性とバイアスの点で依然として優れたパフォーマンスを示しました。

携帯電話は、27 億個のパラメータを備えた大型モデルよりも Microsoft の小型モデルをより適切に実行します

実験的評価

まず、この研究では、Phi-2 を学術ベンチマーク上の共通言語モデルと実験的に比較しました。 :

  • Big Bench Hard (BBH) (CoT で 3 ショット)
  • Common Sense Reasoning (PIQA)、WinoGrande、ARC簡単でやりがいのある、SIQA)、
  • 言語理解 (HellaSwag、OpenBookQA、MMLU (5 ショット)、SQuADv2 (2 ショット)、BoolQ)
  • 数学 (GSM8k (8 ショット))
  • エンコーディング (HumanEval、MBPP (3 ショット))

## Phi-2 モデルには 27 億パラメータしかありませんが、そのパフォーマンスは、さまざまな集計ベンチマークで 7B および 13B Mistral モデルおよび Llama2 モデルを上回っています。 Phi-2 は、大規模な 25x Llama2-70B モデルと比較して、マルチステップの推論タスク (つまり、コーディングと数学) で優れたパフォーマンスを発揮することは言及する価値があります。

さらに、サイズが小さいにもかかわらず、 , Phi-2 のパフォーマンスは、最近リリースされた Gemini Nano 2 に匹敵します

多くの公開ベンチマークがトレーニング データに漏洩する可能性があるため、研究チームはテスト言語を測定する最良の方法であると考えています。モデルのパフォーマンスは、特定のユースケースでテストすることです。したがって、この研究では、複数の内部 Microsoft 独自のデータセットとタスクを使用して Phi-2 を評価し、再度 Mistral および Llama-2 と比較しました。平均して、Phi-2 は Mistral-7B を上回り、Mistral -7B は Llama2 モデル (7B、13B、 70B)。

携帯電話は、27 億個のパラメータを備えた大型モデルよりも Microsoft の小型モデルをより適切に実行します


携帯電話は、27 億個のパラメータを備えた大型モデルよりも Microsoft の小型モデルをより適切に実行します

研究チームは、研究コミュニティの一般的なヒントに関する調査も実施しました。広範囲にテスト済み。 Phi-2 は期待通りのパフォーマンスを発揮しました。たとえば、物理問題を解決するモデルの能力を評価するために使用されるプロンプト (最近、Gemini Ultra モデルの評価に使用されました) の場合、Phi-2 は次の結果を返しました:

携帯電話は、27 億個のパラメータを備えた大型モデルよりも Microsoft の小型モデルをより適切に実行します

携帯電話は、27 億個のパラメータを備えた大型モデルよりも Microsoft の小型モデルをより適切に実行します

以上が携帯電話は、27 億個のパラメータを備えた大型モデルよりも Microsoft の小型モデルをより適切に実行しますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

オープンソース!ゾーイデプスを超えて! DepthFM: 高速かつ正確な単眼深度推定! オープンソース!ゾーイデプスを超えて! DepthFM: 高速かつ正確な単眼深度推定! Apr 03, 2024 pm 12:04 PM

0.この記事は何をするのですか?私たちは、多用途かつ高速な最先端の生成単眼深度推定モデルである DepthFM を提案します。従来の深度推定タスクに加えて、DepthFM は深度修復などの下流タスクでも最先端の機能を実証します。 DepthFM は効率的で、いくつかの推論ステップ内で深度マップを合成できます。この作品について一緒に読みましょう〜 1. 論文情報タイトル: DepthFM: FastMonocularDepthEstimationwithFlowMatching 著者: MingGui、JohannesS.Fischer、UlrichPrestel、PingchuanMa、Dmytr

世界で最も強力なオープンソース MoE モデルが登場。GPT-4 に匹敵する中国語機能を備え、価格は GPT-4-Turbo のわずか 1% 近くです 世界で最も強力なオープンソース MoE モデルが登場。GPT-4 に匹敵する中国語機能を備え、価格は GPT-4-Turbo のわずか 1% 近くです May 07, 2024 pm 04:13 PM

従来のコンピューティングを超える能力を備えているだけでなく、より低コストでより効率的なパフォーマンスを実現する人工知能モデルを想像してみてください。これは SF ではありません。世界で最も強力なオープンソース MoE モデルである DeepSeek-V2[1] が登場しました。 DeepSeek-V2 は、経済的なトレーニングと効率的な推論の特徴を備えた強力な専門家混合 (MoE) 言語モデルです。これは 236B のパラメータで構成されており、そのうち 21B は各マーカーをアクティブにするために使用されます。 DeepSeek67B と比較して、DeepSeek-V2 はパフォーマンスが優れていると同時に、トレーニング コストを 42.5% 節約し、KV キャッシュを 93.3% 削減し、最大生成スループットを 5.76 倍に高めます。 DeepSeek は一般的な人工知能を研究する会社です

AI が数学研究を破壊する!フィールズ賞受賞者で中国系アメリカ人の数学者が上位 11 件の論文を主導 | テレンス・タオが「いいね!」しました AI が数学研究を破壊する!フィールズ賞受賞者で中国系アメリカ人の数学者が上位 11 件の論文を主導 | テレンス・タオが「いいね!」しました Apr 09, 2024 am 11:52 AM

AI は確かに数学を変えつつあります。最近、この問題に細心の注意を払っている陶哲軒氏が『米国数学協会会報』(米国数学協会会報)の最新号を送ってくれた。 「機械は数学を変えるのか?」というテーマを中心に、多くの数学者が意見を述べ、そのプロセス全体は火花に満ち、ハードコアで刺激的でした。著者には、フィールズ賞受賞者のアクシャイ・ベンカテシュ氏、中国の数学者鄭楽軍氏、ニューヨーク大学のコンピューター科学者アーネスト・デイビス氏、その他業界で著名な学者を含む強力な顔ぶれが揃っている。 AI の世界は劇的に変化しています。これらの記事の多くは 1 年前に投稿されたものです。

MLP に代わる KAN は、オープンソース プロジェクトによって畳み込みまで拡張されました MLP に代わる KAN は、オープンソース プロジェクトによって畳み込みまで拡張されました Jun 01, 2024 pm 10:03 PM

今月初め、MIT やその他の機関の研究者らは、MLP に代わる非常に有望な代替案である KAN を提案しました。 KAN は、精度と解釈可能性の点で MLP よりも優れています。また、非常に少数のパラメーターを使用して、多数のパラメーターを使用して実行する MLP よりも優れたパフォーマンスを発揮できます。たとえば、著者らは、KAN を使用して、より小規模なネットワークと高度な自動化で DeepMind の結果を再現したと述べています。具体的には、DeepMind の MLP には約 300,000 個のパラメーターがありますが、KAN には約 200 個のパラメーターしかありません。 KAN は、MLP が普遍近似定理に基づいているのに対し、KAN はコルモゴロフ-アーノルド表現定理に基づいているのと同様に、強力な数学的基礎を持っています。以下の図に示すように、KAN は

こんにちは、電気アトラスです!ボストン・ダイナミクスのロボットが復活、180度の奇妙な動きにマスク氏も恐怖 こんにちは、電気アトラスです!ボストン・ダイナミクスのロボットが復活、180度の奇妙な動きにマスク氏も恐怖 Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas は正式に電動ロボットの時代に突入します!昨日、油圧式アトラスが歴史の舞台から「涙ながらに」撤退したばかりですが、今日、ボストン・ダイナミクスは電動式アトラスが稼働することを発表しました。ボストン・ダイナミクス社は商用人型ロボットの分野でテスラ社と競争する決意を持っているようだ。新しいビデオが公開されてから、わずか 10 時間ですでに 100 万人以上が視聴しました。古い人が去り、新しい役割が現れるのは歴史的な必然です。今年が人型ロボットの爆発的な年であることは間違いありません。ネットユーザーは「ロボットの進歩により、今年の開会式は人間のように見え、人間よりもはるかに自由度が高い。しかし、これは本当にホラー映画ではないのか?」とコメントした。ビデオの冒頭では、アトラスは仰向けに見えるように地面に静かに横たわっています。次に続くのは驚くべきことです

iPhoneのセルラーデータインターネット速度が遅い:修正 iPhoneのセルラーデータインターネット速度が遅い:修正 May 03, 2024 pm 09:01 PM

iPhone のモバイル データ接続に遅延や遅い問題が発生していませんか?通常、携帯電話の携帯インターネットの強度は、地域、携帯ネットワークの種類、ローミングの種類などのいくつかの要因によって異なります。より高速で信頼性の高いセルラー インターネット接続を実現するためにできることがいくつかあります。解決策 1 – iPhone を強制的に再起動する 場合によっては、デバイスを強制的に再起動すると、携帯電話接続を含む多くの機能がリセットされるだけです。ステップ 1 – 音量を上げるキーを 1 回押して放します。次に、音量小キーを押して、もう一度放します。ステップ 2 – プロセスの次の部分は、右側のボタンを押し続けることです。 iPhone の再起動が完了するまで待ちます。セルラーデータを有効にし、ネットワーク速度を確認します。もう一度確認してください 修正 2 – データ モードを変更する 5G はより優れたネットワーク速度を提供しますが、信号が弱い場合はより適切に機能します

超知性の生命力が覚醒する!しかし、自己更新 AI の登場により、母親はデータのボトルネックを心配する必要がなくなりました。 超知性の生命力が覚醒する!しかし、自己更新 AI の登場により、母親はデータのボトルネックを心配する必要がなくなりました。 Apr 29, 2024 pm 06:55 PM

世界は狂ったように大きなモデルを構築していますが、インターネット上のデータだけではまったく不十分です。このトレーニング モデルは「ハンガー ゲーム」のようであり、世界中の AI 研究者は、データを貪欲に食べる人たちにどのように餌を与えるかを心配しています。この問題は、マルチモーダル タスクで特に顕著です。何もできなかった当時、中国人民大学学部のスタートアップチームは、独自の新しいモデルを使用して、中国で初めて「モデル生成データフィード自体」を実現しました。さらに、これは理解側と生成側の 2 つの側面からのアプローチであり、両方の側で高品質のマルチモーダルな新しいデータを生成し、モデル自体にデータのフィードバックを提供できます。モデルとは何ですか? Awaker 1.0 は、中関村フォーラムに登場したばかりの大型マルチモーダル モデルです。チームは誰ですか?ソフォンエンジン。人民大学ヒルハウス人工知能大学院の博士課程学生、ガオ・イージャオ氏によって設立されました。

FisheyeDetNet: 魚眼カメラに基づいた最初のターゲット検出アルゴリズム FisheyeDetNet: 魚眼カメラに基づいた最初のターゲット検出アルゴリズム Apr 26, 2024 am 11:37 AM

目標検出は自動運転システムにおいて比較的成熟した問題であり、その中でも歩行者検出は最も初期に導入されたアルゴリズムの 1 つです。ほとんどの論文では非常に包括的な研究が行われています。ただし、サラウンドビューに魚眼カメラを使用した距離認識については、あまり研究されていません。放射状の歪みが大きいため、標準のバウンディング ボックス表現を魚眼カメラに実装するのは困難です。上記の説明を軽減するために、拡張バウンディング ボックス、楕円、および一般的な多角形の設計を極/角度表現に探索し、これらの表現を分析するためのインスタンス セグメンテーション mIOU メトリックを定義します。提案された多角形モデルの FisheyeDetNet は、他のモデルよりも優れたパフォーマンスを示し、同時に自動運転用の Valeo 魚眼カメラ データセットで 49.5% の mAP を達成しました。

See all articles