ホームページ テクノロジー周辺機器 AI 飛び回ったり、口を開けたり、見つめたり、眉毛を上げたりする顔の特徴をAIが完璧に模倣し、ビデオ詐欺を防ぐことは不可能

飛び回ったり、口を開けたり、見つめたり、眉毛を上げたりする顔の特徴をAIが完璧に模倣し、ビデオ詐欺を防ぐことは不可能

Dec 14, 2023 pm 11:30 PM
データ 知的

このような強力な AI の模倣能力は本当に止められません、完全に止められません。 AIの発展は今ここまで進んでいるのか?

前足で顔の特徴を飛び回らせ、後ろ足でもまったく同じ表情を再現します。見つめたり、眉を上げたり、口をとがらせたり、どんなに大げさな表現であっても、それはすべて非常によく模倣されています。

飛び回ったり、口を開けたり、見つめたり、眉毛を上げたりする顔の特徴をAIが完璧に模倣し、ビデオ詐欺を防ぐことは不可能

#難易度を上げ、眉を高く上げ、目を大きく開き、口の形も歪んでいる仮想キャラクターアバターも完璧に再現できます表現を再現します。

飛び回ったり、口を開けたり、見つめたり、眉毛を上げたりする顔の特徴をAIが完璧に模倣し、ビデオ詐欺を防ぐことは不可能

#左側のパラメータを調整すると、それに応じて右側の仮想アバターの動きも変化します。

飛び回ったり、口を開けたり、見つめたり、眉毛を上げたりする顔の特徴をAIが完璧に模倣し、ビデオ詐欺を防ぐことは不可能

口と目をア​​ップで見てください。全く同じとは言えませんが、表情が全く同じとしか言えません(遠い)右)。

飛び回ったり、口を開けたり、見つめたり、眉毛を上げたりする顔の特徴をAIが完璧に模倣し、ビデオ詐欺を防ぐことは不可能

この研究は、ミュンヘン工科大学などの機関によるもので、ガウシアンアバターは、表情、ポーズ、表現を作成するために使用できる手法です。視点 (視点) )、完全に制御可能なリアルな頭のアバター。

飛び回ったり、口を開けたり、見つめたり、眉毛を上げたりする顔の特徴をAIが完璧に模倣し、ビデオ詐欺を防ぐことは不可能


    #論文アドレス: https://arxiv.org/pdf/2312.02069.pdf
  • 紙のホームページ: https://shenhanqian.github.io/gaussian-avatars
コンピュータ ビジョンとグラフィックスの分野, 人間を動的に表現する仮想頭部を作成することは、常に困難な問題でした。特に極端な表情や細部の表現に関しては、シワや髪などの細部を捉えることが非常に難しく、生成された仮想キャラクターには視覚的なアーティファクトが発生することがよくあります。時間の経過とともに、神経放射線場 (NeRF) とその変種は、多視点観察から静的シーンを再構成する際に目覚ましい結果を達成しました。その後の研究により、これらの手法が拡張され、人間に合わせたシナリオの動的なシーン モデリングに NeRF を使用できるようになりました。ただし、これらの手法の欠点は、制御性が低く、新しいポーズや表情にうまく適応できないことです。

最近登場した「3D ガウス スプレー法」手法は、NeRF よりも優れたパフォーマンスを達成します。リアルタイムのビュー合成のための高いレンダリング品質。ただし、この方法では、再構成された出力のアニメーションはサポートされていません。

この論文では、3 次元ガウス スプラットに基づく動的な 3D 人間の頭部表現方法である GaussianAvatars を提案します。

具体的には、FLAME (頭全体をモデリング) メッシュを指定して、各三角形の中心で 3D ガウスを初期化しました。 FLAME メッシュがアニメーション化されると、各ガウス モデルは親三角形に基づいて移動、回転、およびスケーリングされます。次に、3D ガウスはメッシュの上に放射フィールドを形成し、メッシュが正確に位置合わせされていない領域や、特定の視覚要素を再現できない領域を補償します。

仮想キャラクターの高度なリアリズムを維持するために、この記事ではバインディング継承戦略を採用しています。同時に、この論文では、仮想キャラクターの斬新な表情や姿勢をアニメーション化するために、現実性と安定性の維持のバランスをとる方法についても研究しています。研究結果は、既存の研究と比較して、GaussianAvatars が新しいビューのレンダリングとビデオ再生の推進において優れたパフォーマンスを発揮することを示しています

方法の紹介

飛び回ったり、口を開けたり、見つめたり、眉毛を上げたりする顔の特徴をAIが完璧に模倣し、ビデオ詐欺を防ぐことは不可能

以下の図 2 に示すように、GaussianAvatars への入力は人間の頭部のマルチビュー ビデオ記録です。各タイム ステップで、GaussianAvatars はフォトメトリック ヘッド トラッカーを使用して、FLAME パラメータをマルチビュー観測および既知のカメラ パラメータと照合します。

飛び回ったり、口を開けたり、見つめたり、眉毛を上げたりする顔の特徴をAIが完璧に模倣し、ビデオ詐欺を防ぐことは不可能

#FLAME メッシュの頂点の位置は異なりましたが、トポロジーは同じであったため、研究チームはメッシュの三角形と 3D ガウス スプラットの間に一貫した接続を作成することができました。微分可能なタイル ラスタライザーを使用して、スプラットを画像にレンダリングします。次に、実際の画像の監視により、リアルな人間の頭のアバターが学習されます

#最高の品質を得るには、一連の適応密度制御を介してガウス スプラットによって静的シーンを圧縮し、枝刈りする必要があります。オペレーション。これを達成するために、研究チームは、三角形とスプラットの間の接続を破壊することなく、新しいガウス ポイントを FLAME メッシュにバインドしたままにするバインディング継承戦略を設計しました。

#実験結果

この研究では、新しい遠近合成技術を使用して、再構成の品質を評価し、自己再生によるアニメーションの忠実度を評価します。以下の図 3 は、さまざまな方法間の定性的な比較の結果を示しています。新しいパースペクティブ合成に関しては、すべての方法で妥当なレンダリング結果を生成できます。ただし、PointAvatar の結果を詳しく調べると、固定ポイント サイズが原因でポイント アーティファクトが発生していることがわかります。 3D ガウス異方性スケーリング技術を使用した GaussianAvatar は、この問題を軽減できます。

飛び回ったり、口を開けたり、見つめたり、眉毛を上げたりする顔の特徴をAIが完璧に模倣し、ビデオ詐欺を防ぐことは不可能

結論として、表 1 の定量的比較からも同様の結果を引き出すことができます。他の方法と比較して、GaussianAvatars は新しいビューの合成で優れたパフォーマンスを発揮し、自己再現にも優れており、LPIPS における知覚の違いが大幅に減少しています。自己再現は FLAME グリッド トラッキングに基づいており、ターゲット画像と完全に一致していない可能性があることに注意してください。

飛び回ったり、口を開けたり、見つめたり、眉毛を上げたりする顔の特徴をAIが完璧に模倣し、ビデオ詐欺を防ぐことは不可能

現実のアバター アニメーションの世界におけるパフォーマンスについて、この研究では図 4 に示す異性間再現実験を実施しました。結果は、アバターがソース俳優のまばたきや口の動きを正確に再現し、しわなどの生き生きとした複雑なダイナミクスを示していることを示しました。

#メソッドのコンポーネントの有効性を検証するために、研究ではアブレーション実験も実施しました。結果は次のとおりです。 飛び回ったり、口を開けたり、見つめたり、眉毛を上げたりする顔の特徴をAIが完璧に模倣し、ビデオ詐欺を防ぐことは不可能


以上が飛び回ったり、口を開けたり、見つめたり、眉毛を上げたりする顔の特徴をAIが完璧に模倣し、ビデオ詐欺を防ぐことは不可能の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

ddrescue を使用して Linux 上のデータを回復する ddrescue を使用して Linux 上のデータを回復する Mar 20, 2024 pm 01:37 PM

DDREASE は、ハード ドライブ、SSD、RAM ディスク、CD、DVD、USB ストレージ デバイスなどのファイル デバイスまたはブロック デバイスからデータを回復するためのツールです。あるブロック デバイスから別のブロック デバイスにデータをコピーし、破損したデータ ブロックを残して正常なデータ ブロックのみを移動します。 ddreasue は、回復操作中に干渉を必要としないため、完全に自動化された強力な回復ツールです。さらに、ddasue マップ ファイルのおかげでいつでも停止および再開できます。 DDREASE のその他の主要な機能は次のとおりです。 リカバリされたデータは上書きされませんが、反復リカバリの場合にギャップが埋められます。ただし、ツールに明示的に指示されている場合は切り詰めることができます。複数のファイルまたはブロックから単一のファイルにデータを復元します

オープンソース!ゾーイデプスを超えて! DepthFM: 高速かつ正確な単眼深度推定! オープンソース!ゾーイデプスを超えて! DepthFM: 高速かつ正確な単眼深度推定! Apr 03, 2024 pm 12:04 PM

0.この記事は何をするのですか?私たちは、多用途かつ高速な最先端の生成単眼深度推定モデルである DepthFM を提案します。従来の深度推定タスクに加えて、DepthFM は深度修復などの下流タスクでも最先端の機能を実証します。 DepthFM は効率的で、いくつかの推論ステップ内で深度マップを合成できます。この作品について一緒に読みましょう〜 1. 論文情報タイトル: DepthFM: FastMonocularDepthEstimationwithFlowMatching 著者: MingGui、JohannesS.Fischer、UlrichPrestel、PingchuanMa、Dmytr

Google は大喜び: JAX のパフォーマンスが Pytorch や TensorFlow を上回りました! GPU 推論トレーニングの最速の選択肢となる可能性があります Google は大喜び: JAX のパフォーマンスが Pytorch や TensorFlow を上回りました! GPU 推論トレーニングの最速の選択肢となる可能性があります Apr 01, 2024 pm 07:46 PM

Google が推進する JAX のパフォーマンスは、最近のベンチマーク テストで Pytorch や TensorFlow のパフォーマンスを上回り、7 つの指標で 1 位にランクされました。また、テストは最高の JAX パフォーマンスを備えた TPU では行われませんでした。ただし、開発者の間では、依然として Tensorflow よりも Pytorch の方が人気があります。しかし、将来的には、おそらくより大規模なモデルが JAX プラットフォームに基づいてトレーニングされ、実行されるようになるでしょう。モデル 最近、Keras チームは、ネイティブ PyTorch 実装を使用して 3 つのバックエンド (TensorFlow、JAX、PyTorch) をベンチマークし、TensorFlow を使用して Keras2 をベンチマークしました。まず、主流のセットを選択します

iPhoneのセルラーデータインターネット速度が遅い:修正 iPhoneのセルラーデータインターネット速度が遅い:修正 May 03, 2024 pm 09:01 PM

iPhone のモバイル データ接続に遅延や遅い問題が発生していませんか?通常、携帯電話の携帯インターネットの強度は、地域、携帯ネットワークの種類、ローミングの種類などのいくつかの要因によって異なります。より高速で信頼性の高いセルラー インターネット接続を実現するためにできることがいくつかあります。解決策 1 – iPhone を強制的に再起動する 場合によっては、デバイスを強制的に再起動すると、携帯電話接続を含む多くの機能がリセットされるだけです。ステップ 1 – 音量を上げるキーを 1 回押して放します。次に、音量小キーを押して、もう一度放します。ステップ 2 – プロセスの次の部分は、右側のボタンを押し続けることです。 iPhone の再起動が完了するまで待ちます。セルラーデータを有効にし、ネットワーク速度を確認します。もう一度確認してください 修正 2 – データ モードを変更する 5G はより優れたネットワーク速度を提供しますが、信号が弱い場合はより適切に機能します

超知性の生命力が覚醒する!しかし、自己更新 AI の登場により、母親はデータのボトルネックを心配する必要がなくなりました。 超知性の生命力が覚醒する!しかし、自己更新 AI の登場により、母親はデータのボトルネックを心配する必要がなくなりました。 Apr 29, 2024 pm 06:55 PM

世界は狂ったように大きなモデルを構築していますが、インターネット上のデータだけではまったく不十分です。このトレーニング モデルは「ハンガー ゲーム」のようであり、世界中の AI 研究者は、データを貪欲に食べる人たちにどのように餌を与えるかを心配しています。この問題は、マルチモーダル タスクで特に顕著です。何もできなかった当時、中国人民大学学部のスタートアップチームは、独自の新しいモデルを使用して、中国で初めて「モデル生成データフィード自体」を実現しました。さらに、これは理解側と生成側の 2 つの側面からのアプローチであり、両方の側で高品質のマルチモーダルな新しいデータを生成し、モデル自体にデータのフィードバックを提供できます。モデルとは何ですか? Awaker 1.0 は、中関村フォーラムに登場したばかりの大型マルチモーダル モデルです。チームは誰ですか?ソフォンエンジン。人民大学ヒルハウス人工知能大学院の博士課程学生、ガオ・イージャオ氏によって設立されました。

アメリカ空軍が初のAI戦闘機を公開し注目を集める!大臣はプロセス全体を通じて干渉することなく個人的にテストを実施し、10万行のコードが21回にわたってテストされました。 アメリカ空軍が初のAI戦闘機を公開し注目を集める!大臣はプロセス全体を通じて干渉することなく個人的にテストを実施し、10万行のコードが21回にわたってテストされました。 May 07, 2024 pm 05:00 PM

最近、軍事界は、米軍戦闘機が AI を使用して完全自動空戦を完了できるようになったというニュースに圧倒されました。そう、つい最近、米軍のAI戦闘機が初めて公開され、その謎が明らかになりました。この戦闘機の正式名称は可変安定性飛行シミュレーター試験機(VISTA)で、アメリカ空軍長官が自ら飛行させ、一対一の空戦をシミュレートした。 5 月 2 日、フランク ケンダル米国空軍長官は X-62AVISTA でエドワーズ空軍基地を離陸しました。1 時間の飛行中、すべての飛行動作が AI によって自律的に完了されたことに注目してください。ケンダル氏は「過去数十年にわたり、私たちは自律型空対空戦闘の無限の可能性について考えてきたが、それは常に手の届かないものだと思われてきた」と語った。しかし今では、

柔軟かつ高速な 5 本の指を備え、人間のタスクを自律的に完了する初のロボットが登場、大型モデルが仮想空間トレーニングをサポート 柔軟かつ高速な 5 本の指を備え、人間のタスクを自律的に完了する初のロボットが登場、大型モデルが仮想空間トレーニングをサポート Mar 11, 2024 pm 12:10 PM

今週、OpenAI、Microsoft、Bezos、Nvidiaが投資するロボット企業FigureAIは、7億ドル近くの資金調達を受け、来年中に自立歩行できる人型ロボットを開発する計画であると発表した。そしてテスラのオプティマスプライムには繰り返し良い知らせが届いている。今年が人型ロボットが爆発的に普及する年になることを疑う人はいないだろう。カナダに拠点を置くロボット企業 SanctuaryAI は、最近新しい人型ロボット Phoenix をリリースしました。当局者らは、多くのタスクを人間と同じ速度で自律的に完了できると主張している。人間のスピードでタスクを自律的に完了できる世界初のロボットである Pheonix は、各オブジェクトを優しくつかみ、動かし、左右にエレガントに配置することができます。自律的に物体を識別できる

Alibaba 7B マルチモーダル文書理解の大規模モデルが新しい SOTA を獲得 Alibaba 7B マルチモーダル文書理解の大規模モデルが新しい SOTA を獲得 Apr 02, 2024 am 11:31 AM

マルチモーダル文書理解機能のための新しい SOTA!アリババの mPLUG チームは、最新のオープンソース作品 mPLUG-DocOwl1.5 をリリースしました。これは、高解像度の画像テキスト認識、一般的な文書構造の理解、指示の遵守、外部知識の導入という 4 つの主要な課題に対処するための一連のソリューションを提案しています。さっそく、その効果を見てみましょう。複雑な構造のグラフをワンクリックで認識しMarkdown形式に変換:さまざまなスタイルのグラフが利用可能:より詳細な文字認識や位置決めも簡単に対応:文書理解の詳しい説明も可能:ご存知「文書理解」 「」は現在、大規模な言語モデルの実装にとって重要なシナリオです。市場には文書の読み取りを支援する多くの製品が存在します。その中には、主にテキスト認識に OCR システムを使用し、テキスト処理に LLM と連携する製品もあります。

See all articles