ホームページ バックエンド開発 Python チュートリアル CSV ファイルを読み取り、pandas を使用してデータ分析を実行する

CSV ファイルを読み取り、pandas を使用してデータ分析を実行する

Jan 09, 2024 am 09:26 AM
データ分析 pandas CSVを読む

CSV ファイルを読み取り、pandas を使用してデータ分析を実行する

Pandas は、さまざまな種類のデータ ファイルを簡単に読み取り、処理できる強力なデータ分析ツールです。その中でも、CSV ファイルは最も一般的でよく使用されるデータ ファイル形式の 1 つです。この記事では、Pandas を使用して CSV ファイルを読み取り、データ分析を実行する方法と、具体的なコード例を紹介します。

1. 必要なライブラリをインポートします
まず、以下に示すように、Pandas ライブラリと必要になる可能性のあるその他の関連ライブラリをインポートする必要があります:

import pandas as pd
ログイン後にコピー

2. CSV ファイルを読み取ります。
CSV ファイルは、Pandas の read_csv() 関数を使用して読み取ることができます。関数では、CSV ファイルへのパスをパラメータとして指定する必要があります。例は次のとおりです。

data = pd.read_csv('data.csv')
ログイン後にコピー

上記のコードでは、CSV ファイルの名前が data.csv であると仮定します。は、Python コード ファイルと同じディレクトリに配置されます。実際の状況に応じてパスを変更できます。

3. データを理解する
データを分析する前に、まずデータの基本的な状況を理解する必要があります。 Pandas は、データに関する関連情報を迅速に取得するのに役立つさまざまな方法を提供します。

  1. データの最初の数行を表示する
    head() 関数を使用して、データの最初の数行を表示できます。デフォルトでは、最初の 5 行が表示されます。例は次のとおりです。 :
print(data.head())
ログイン後にコピー
  1. データの基本情報の表示
    info() 関数を使用して、各列のデータ型、列の数などのデータの基本情報を表示します。 null 以外の値など:
print(data.info())
ログイン後にコピー
  1. データの統計的概要を表示する
    describe() 関数を使用して、カウント、平均などのデータの統計的概要を取得します。 、標準偏差、最小値、25%、中央値、75%、最大値など:
print(data.describe())
ログイン後にコピー

4. データ分析
データを分析する前に、いくつかの前処理を実行する必要がある場合があります。欠損値の処理、外れ値の処理など、データに関するここでは、データが前処理されており、データに欠損値や外れ値が存在しないことを前提としています。

次に、一般的に使用されるデータ分析操作の例を示します。

  1. 特定の列の合計を計算する
    sum() 関数を使用して、特定の列の合計を計算します。
total = data['column_name'].sum()
print('The total is:', total)
ログイン後にコピー

上記のコードでは、「column_name」を計算対象の実際の列の名前に置き換えます。

  1. 特定の列の平均を計算する
    mean() 関数を使用して、特定の列の平均を計算します。例は次のとおりです:
average = data['column_name'].mean()
print('The average is:', average)
ログイン後にコピー
  1. 特定の列の最大値と最小値を計算する
    max()関数とmin()関数を使用して、それぞれ特定の列の最大値と最小値を計算します。例は次のとおりです:
max_value = data['column_name'].max()
min_value = data['column_name'].min()
print('The maximum value is:', max_value)
print('The minimum value is:', min_value)
ログイン後にコピー
  1. 特定の列の一意の値の統計
    列の一意の値をカウントするには、 unique() 関数を使用します。例は次のとおりです:
unique_values = data['column_name'].unique()
print('The unique values are:', unique_values)
ログイン後にコピー

5. 結果を保存します。
分析結果を保存する必要がある場合は、to_csv( ) 関数を使用して結果を CSV ファイルとして保存できます。例は次のとおりです。

result.to_csv('result.csv', index=False)
ログイン後にコピー

上記のコードでは、分析結果を result.csv ファイルとして保存します。

6. 概要
この記事では、Pandas を使用して CSV ファイルを読み取り、データ分析を実行する方法を紹介します。まず必要なライブラリをインポートし、read_csv() 関数で CSV ファイルを読み込み、head()、info()、describe() 関数を使用してデータの基本的な状況を理解しました。次に、列の合計値、平均値、最大値、最小値の計算、列の一意の値のカウントなどのデータ分析操作の例をいくつか示します。最後に、分析結果をCSVファイルとして保存する方法についても紹介しました。この記事が、データ分析に Pandas をより快適に使用できるようになることを願っています。

上記は、Pandas が CSV ファイルを読み取ってデータ分析を実行する方法についての紹介です。

以上がCSV ファイルを読み取り、pandas を使用してデータ分析を実行するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

一般的なパンダのインストール問題の解決: インストール エラーの解釈と解決策 一般的なパンダのインストール問題の解決: インストール エラーの解釈と解決策 Feb 19, 2024 am 09:19 AM

Pandas インストール チュートリアル: 一般的なインストール エラーとその解決策の分析、特定のコード サンプルが必要です はじめに: Pandas は、データ クリーニング、データ処理、およびデータ視覚化で広く使用されている強力なデータ分析ツールであるため、この分野で高く評価されていますデータサイエンスのただし、環境構成と依存関係の問題により、パンダのインストール時に問題やエラーが発生する可能性があります。この記事では、パンダのインストール チュートリアルを提供し、いくつかの一般的なインストール エラーとその解決策を分析します。 1.パンダをインストールする

pandasを使用してtxtファイルを正しく読み取る方法 pandasを使用してtxtファイルを正しく読み取る方法 Jan 19, 2024 am 08:39 AM

pandas を使用して txt ファイルを正しく読み取る方法には、特定のコード サンプルが必要です。パンダは、広く使用されている Python データ分析ライブラリです。CSV ファイル、Excel ファイル、SQL データベースなど、さまざまな種類のデータの処理に使用できます。同時に、txt ファイルなどのテキスト ファイルを読み取るために使用することもできます。ただし、txt ファイルを読み取るときに、エンコードの問題や区切り文字の問題など、いくつかの問題が発生することがあります。この記事ではパンダを使ってtxtを正しく読む方法を紹介します。

pandas を使用して txt ファイルを読み取るための実践的なヒント pandas を使用して txt ファイルを読み取るための実践的なヒント Jan 19, 2024 am 09:49 AM

pandas を使用して txt ファイルを読み取るための実践的なヒント、具体的なコード例が必要です データ分析とデータ処理では、txt ファイルは一般的なデータ形式です。 pandas を使用して txt ファイルを読み取ると、高速で便利なデータ処理が可能になります。この記事では、パンダをより効果的に使用して txt ファイルを読み取るのに役立ついくつかの実践的なテクニックを、具体的なコード例とともに紹介します。区切り文字付きの txt ファイルの読み取りパンダを使用して区切り文字付きの txt ファイルを読み取る場合は、read_c を使用できます。

Pandas の効率的なデータ重複排除方法を明らかに: 重複データをすばやく削除するためのヒント Pandas の効率的なデータ重複排除方法を明らかに: 重複データをすばやく削除するためのヒント Jan 24, 2024 am 08:12 AM

Pandas 重複排除メソッドの秘密: データを重複排除するための高速かつ効率的な方法 (特定のコード例が必要) データの分析と処理のプロセスでは、データの重複が頻繁に発生します。データが重複すると分析結果が誤解される可能性があるため、重複排除は非常に重要な手順です。強力なデータ処理ライブラリである Pandas では、データ重複排除を実現するためのさまざまな方法が提供されています。この記事では、一般的に使用されるいくつかの重複排除方法を紹介し、具体的なコード例を添付します。単一列に基づく重複排除の最も一般的なケースは、特定の列の値が重複しているかどうかに基づいています。

シンプルなパンダのインストール チュートリアル: さまざまなオペレーティング システムにパンダをインストールする方法に関する詳細なガイダンス シンプルなパンダのインストール チュートリアル: さまざまなオペレーティング システムにパンダをインストールする方法に関する詳細なガイダンス Feb 21, 2024 pm 06:00 PM

シンプルなパンダのインストール チュートリアル: さまざまなオペレーティング システムにパンダをインストールする方法に関する詳細なガイダンス、特定のコード サンプルが必要です. データ処理と分析の需要が高まり続けるにつれて、パンダは多くのデータ サイエンティストやアナリストにとって推奨されるツールの 1 つになりました。 pandas は、大量の構造化データを簡単に処理および分析できる強力なデータ処理および分析ライブラリです。この記事では、さまざまなオペレーティング システムにパンダをインストールする方法を詳しく説明し、具体的なコード例を示します。 Windows オペレーティング システムにインストールする

PythonPandas のインストール ガイド: 理解しやすく操作が簡単 PythonPandas のインストール ガイド: 理解しやすく操作が簡単 Jan 24, 2024 am 09:39 AM

シンプルでわかりやすい PythonPandas インストールガイド PythonPandas は強力なデータ操作および分析ライブラリであり、柔軟で使いやすいデータ構造とデータ分析ツールを提供し、Python データ分析の重要なツールの 1 つです。この記事では、Pandas を迅速にインストールするのに役立つ、シンプルでわかりやすい PythonPandas インストール ガイドを提供し、簡単に開始できるように具体的なコード例を添付します。 Python のインストール Pandas をインストールする前に、まず次のことを行う必要があります。

txt ファイルを読み取るパンダに関する FAQ txt ファイルを読み取るパンダに関する FAQ Jan 19, 2024 am 09:19 AM

Pandas は Python 用のデータ分析ツールであり、データのクリーニング、処理、分析に特に適しています。データ分析プロセスでは、Txt ファイルなどのさまざまな形式のデータ ファイルを読み取る必要があることがよくあります。ただし、特定の操作中にいくつかの問題が発生する場合があります。この記事では、pandas での txt ファイルの読み取りに関するよくある質問への回答と、対応するコード例を紹介します。質問 1: txt ファイルを読み取るにはどうすればよいですか? txt ファイルは、pandas の read_csv() 関数を使用して読み取ることができます。それの訳は

データ処理ツール: pandas で Excel ファイルを読み取るための効率的なテクニック データ処理ツール: pandas で Excel ファイルを読み取るための効率的なテクニック Jan 19, 2024 am 08:58 AM

データ処理の人気が高まるにつれ、データを効率的に使用し、データを活用する方法にますます多くの人々が注目しています。日々のデータ処理において、Excel テーブルは間違いなく最も一般的なデータ形式です。しかし、大量のデータを処理する必要がある場合、Excel を手動で操作するのは明らかに時間と労力がかかります。したがって、この記事では、効率的なデータ処理ツールである pandas と、このツールを使用して Excel ファイルをすばやく読み込んでデータ処理を実行する方法を紹介します。 1.パンダパンダの紹介

See all articles