生成 AI は高度な分析に新たな可能性をもたらします
生成人工知能 (GenAI) の出現は、産業プロセス分析に刺激的な新しい展望をもたらします。この革新的なテクノロジーは、ユーザーのプロンプトに基づいて新しいテキスト、コード、画像などのコンテンツを生成し、プロセス製造業者にデータ分析、運用の最適化、重要な意思決定の方法を変革する可能性を提供します。この革新的な機能により、企業は必要な情報をより迅速に取得し、生成されたコンテンツを使用して意思決定を導き、産業プロセスを改善することができます。したがって、GenAI の導入は、生産性と品質の向上を促進し、ビジネスのさらなる成功につながる強力なツールを業界にもたらします。
生成 AI への関心は、特に産業用インターネットの出現により、メーカーが「データが豊富で情報が少ない」状況に直面したときに感じる混乱プロセスから来ています。モノ (IIoT)、運用データとデバイス データの量、複雑さ、アクセスしやすさは増加し続けています。ただし、この過剰なデータは、効果的に管理できれば大きなチャンスとなります。
人工知能と機械学習テクノロジーの出現により、より有意義な洞察が得られる可能性が生まれていますが、多くの組織にとって、生データから有意義な洞察を得るまでの道のりは依然として長いものです。
その結果、エンジニアリング、運用、管理を含むチーム メンバーは、データから貴重な洞察を迅速に導き出せるソフトウェアを必要としています。生成 AI を高度な分析ソフトウェアに統合すると、分野の専門家がソフトウェアの能力を活用しやすくなり、ソフトウェアの有効性が向上するため、プロセス業界に影響を与えるでしょう。このソフトウェアを使用すると、チーム メンバーはデータ分析結果をより迅速に取得し、対応するアクションを実行して生産およびビジネス指標を向上させることができます。これにより、チームの意思決定の速度と正確性が向上し、ビジネスの成長と発展が促進されます。
生成 AI を使用して高度な分析を強化する
生成 AI の大規模言語モデルは、人間の入力を理解し、テキストとコンピューター コードを生成することに優れています。高度な分析ソリューションは、クレンジングおよびコンテキスト化された時系列データへの効率的なアクセスを提供し、明確な分析結果を提供します。これら 2 つのテクノロジーを組み合わせることで、パターンを特定し、洞察を収集し、予測を行い、推奨アクションを提供するソフトウェア ソリューションの能力を大幅に向上させることができます。
生成 AI で強化された高度な分析ソリューションを成功させるには、ドメインの専門家がビジネス戦略とテクノロジー戦略に沿って効果的に実行できるように、重要な要素を提供する必要があります。そして効果的な意思決定を行います。
最大限の成功を達成するには、信頼性の高いエンタープライズ データ、高度な分析、生成 AI といった重要な要素を、バックエンドに統合するだけでなく、中核となるドメインの専門家と統合する必要があります (図 1 を参照)。
生成 AI で高度な分析を強化することで、企業は次のような多くのメリットを得ることができます。
- 意思決定の強化: 自然言語で概要と詳細な説明を提供することで、ドメインの専門家はより多くのことを行うことができます。プロセス全体を簡単に理解し、データに基づいた意思決定をより正確に行うことができます。その結果、大量のデータセットを分析して傾向、異常、機会を特定し、積極的な意思決定を可能にすることが可能になります。
- 分析効率の向上: 短いテキストベースのタスクの説明から、それらのタスクを実行する機能的なコンピューター コードに、多くの場合最小限の調整と修正で迅速に移行できます。これにより、エンジニアやデータ サイエンティストなどの分野の専門家は価値の高い活動に集中できるようになり、洞察を得るまでの時間が短縮されます。
- 予測機能の向上: 生成 AI は、異常を検出し、予測メンテナンスに通知し、生産データを予測するアルゴリズムベースの分析の機能を向上させます。また、特に操作手順やログと組み合わせたセンサー データを表すデータセットにおけるパターン検出のための追加機能も提供します。
- オンボーディングとトレーニングの簡素化: 生成 AI を使用して会話型およびインタラクティブなユーザー インターフェイスをサポートできるため、学習者は製造分野の技術を習得しやすくなります。また、生成型 AI ベースのトレーニングは、現在の知識ベースへの継続的な接続を通じて関連性を維持するため、トレーニングの定着率が向上します。
ドメイン専門家の仕事を容易にする最新のテクノロジーへの合理的なアクセスを提供することで、企業は事業運営を再定義するだけでなく、刺激的で積極的で有能なデジタル組織を育成することができます。
生成型 AI の制限とリスク
生成型 AI は将来的に大幅な改善が期待できますが、組織はその制限とそれに伴うリスクを認識する必要があります。これらの課題には、データの課題、透明性の欠如、データのプライバシーの問題などが含まれます。
生成 AI モデルは通常、人類の共通知識を表す公開データ セットを使用してトレーニングされます。このデータ セットはインターネット上で入手できますが、プライベートな知識はありません。トレーニング データに存在する固有のバイアスを除去することが難しいため、結果が不正確になる可能性があります。ドメイン固有のプライベート データを使用してモデルをトレーニングするのは面倒で、技術的に困難です。
複雑な生成 AI モデルは、フロントエンドからは解釈不可能なブラック ボックスのように見えることが多く、そのため意思決定プロセスの説明が困難になります。モデルを使用する人は注意が必要です。これらのモデルが他のソフトウェアにデータをフィードすると、偽情報の拡散を減らすために生成された AI の結果をフィルタリングする際に複雑さが加わり、危害を及ぼすリスクが生じます。
デリケートな業界に生成 AI を導入する場合、データのプライバシーとセキュリティの問題に対処する必要があります。生成 AI プラットフォームはモデルのトレーニングのためにインターネットに公開されているため、開発者と実装者は、データの漏洩を避けるために、機密情報を公開コンポーネントから分離するように注意する必要があります。
生成型 AI に関するメディアの誇大宣伝が増え続ける中、企業はよくある誤解にも注意する必要があります。一般的な議論にもかかわらず、生成 AI が効果的に動作するには人間の監視が必要です。これは、ドメイン専門家の必要性に取って代わるものではなく、専門知識を補完するものです。
効果的な生成 AI モデルの構築には、多くの時間と労力が必要です。すぐに解決できる万能薬ではありません。プロセス産業に導入する場合、これらのモデルは特定のニーズに合わせて微調整およびカスタマイズする必要があります。既製のソリューションでは最適な結果が得られない場合や、妥当な結果さえ得られない場合があります。
準備と実装の 3 つの重要な要素
生成 AI を使用してプロセス システム データ分析を強化する準備ができているかを評価するには、企業は 3 つの重要な属性を検討する必要があります。
- データ品質: プロセスデータの完全性とアクセス可能性を評価します。高品質のデータは、生成 AI の有効性と、それに取り組んでいるチームが解決している特定のプロセスの問題との関連性にとって非常に重要です。
- スキルの専門知識: プロセス産業に関連するデータ サイエンスと AI の習熟度を評価します。従業員が生成型 AI ソリューションを開発および保守するスキルを備えているかどうか、またソリューションの対象となるプロセスとビジネス チームを理解しているかどうかを判断します。
- インフラストラクチャ: リソースを大量に消費する生成型 AI の導入をサポートするために、必要なコンピューティング インフラストラクチャとデータ ストレージ機能が整備されていることを確認します。
上記の重要な要素を考慮した後、企業は生成 AI を適切に適用および展開するために次のガイドラインにも従う必要があります。
- スキルに投資する: 従業員にデータを使用するトレーニングを実施する科学と AI を活用しながら、生成 AI イニシアチブを効果的に推進するための社内専門知識を開発します。
- 標準の定義: データの品質、プライバシー、業界規制へのコンプライアンスを確保するために、堅牢なデータ ガバナンス慣行を確立します。
- 小規模から始める: 規模を拡大する前に、パイロット プロジェクトから始めて、組織の特定のユースケースに対する生成 AI の適用性をテストします。
- 継続的な学習を促進する: 知識を追求し、生成 AI テクノロジーの進化に適応する文化を育みます。
生成 AI の可能性を解き放つ
生成 AI には、産業データ分析と意思決定方法に革命をもたらす可能性があります。生成 AI と高度な分析を組み合わせることで、プロセスメーカーは効率、精度、イノベーションを新たなレベルに引き上げることができます。生成 AI の可能性を最大限に発揮するには、その制限とリスクを慎重に検討し、組織を準備するための戦略的アプローチが必要です。
プロセスの専門家は、生成 AI の力を活用して、これらのソリューションをワークフローにスマートに統合して、有利な結果を導き、競争が激化する環境で優位に立つことができます。
以上が生成 AI は高度な分析に新たな可能性をもたらしますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究

8月1日の本サイトのニュースによると、SKハイニックスは本日(8月1日)ブログ投稿を発表し、8月6日から8日まで米国カリフォルニア州サンタクララで開催されるグローバル半導体メモリサミットFMS2024に参加すると発表し、多くの新世代の製品。フューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) の紹介。以前は主に NAND サプライヤー向けのフラッシュ メモリ サミット (FlashMemorySummit) でしたが、人工知能技術への注目の高まりを背景に、今年はフューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) に名前が変更されました。 DRAM およびストレージ ベンダー、さらに多くのプレーヤーを招待します。昨年発売された新製品SKハイニックス
