インタラクション手法の定義: モデルの定量化とエッジ人工知能の間のインタラクション
人工知能とエッジ コンピューティングの統合は、多くの業界に革命的な変化をもたらしました。その中で、モデルの定量化における急速な革新が重要な役割を果たしています。モデルの量子化は、移植性の向上とモデル サイズの縮小によって計算を高速化する手法です。
書き直された内容は次のとおりです: エッジ デバイスの計算能力は限られており、高精度モデルを展開するニーズを満たすことができません。量子化テクノロジーは、このギャップを埋めるために導入され、より高速、より効率的、よりコスト効率の高いエッジ AI ソリューションを実現します。 Generalized Post-Training Quantization (GPTQ)、Low-Rank Adaptation (LoRA)、Quantitative Low-Rank Adaptation (QLoRA) などの画期的なテクノロジーにより、リアルタイム データが生成されるため、分析と意思決定が容易になることが約束されています
エッジ AI を適切なツールやテクノロジーと組み合わせることで、データやデータ駆動型アプリケーションと対話する方法を再定義できます
エッジ人工知能を選択する理由
エッジ人工知能 目標は、データ処理とモデルを、リモート サーバー、タブレット、IoT デバイス、スマートフォンなどのデータが生成される場所に近づけることです。これにより、低遅延のリアルタイム人工知能が可能になります。 2025 年までに、ディープ ニューラル ネットワーク データ分析の半分以上がエッジで実行されるようになると予想されています。このパラダイム シフトは、複数の利点をもたらします。
- 遅延の削減: エッジ AI は、デバイス上でデータを直接処理することで、クラウドとの間でデータをやり取りする必要性を減らします。これは、リアルタイム データに依存し、高速な応答を必要とするアプリケーションにとって重要です。
- コストと複雑さの削減: データをエッジでローカルに処理することで、情報を送受信する高価なデータ伝送コストが不要になります。
- プライバシー保護: データはデバイス上に残るため、データ送信やデータ漏洩のセキュリティ リスクが軽減されます。
- スケーラビリティの向上: エッジ AI への分散アプローチにより、中央サーバーの処理能力に依存せずにアプリケーションを拡張することが容易になります。
たとえば、メーカーはエッジ AI テクノロジーを自社のプロセスに適用して、予知保全、品質管理、欠陥検出を行うことができます。スマート マシンとセンサーで人工知能を実行し、データをローカルで分析することで、メーカーはリアルタイム データをより有効に活用し、ダウンタイムを削減し、生産プロセスと効率を向上させることができます。
モデルの定量化の役割
エッジ AI が機能するには、AI モデルが精度を損なうことなくパフォーマンスを最適化する必要があります。 AI モデルがより複雑かつ大規模になるにつれて、処理がより困難になります。これにより、エッジで人工知能モデルを展開する際に課題が生じます。エッジ デバイスではリソースが限られており、そのようなモデルをサポートする能力にも限界があることが多いためです。
モデル パラメーターの数値精度は、たとえば、モデルの量子化によって低下する可能性があります。 32 ビットから 32 ビットへ。浮動小数点数は 8 ビット整数に削減され、モデルがより軽量になり、携帯電話、エッジ デバイス、組み込みシステムなどのリソースに制約のあるデバイスへの展開に適しています
#GPTQ、LoRA、QLoRA テクノロジーは、モデルの定量化の分野で大きな変革をもたらす可能性があります。 GPTQ、LoRA、QLoRA の 3 つのテクノロジーが、モデルの量子化の分野で大きな変革をもたらす可能性があるものとして浮上しています。- GPTQ では、トレーニング後にモデルを圧縮します。メモリに制約のある環境にモデルをデプロイするのに最適です。
- LoRA には、推論用の大規模な事前トレーニング済みモデルの微調整が含まれます。具体的には、事前トレーニングされたモデルの大きな行列を構成する小さな行列 (LoRA アダプターと呼ばれる) を微調整します。
- QLoRA は、事前トレーニングされたモデルに GPU メモリを利用する、よりメモリ効率の高いオプションです。 LoRA と QLoRA は、計算リソースが限られている新しいタスクやデータセットにモデルを適応させる場合に特に役立ちます。
エッジ AI の迅速な開発を促進するには、ローカルおよびクラウドベースのデータ管理、配布、処理に永続的なデータ層が不可欠です。マルチモーダル AI モデルの出現により、エッジ コンピューティングの運用ニーズを満たすには、さまざまな種類のデータを処理できる統合プラットフォームが重要になります。統合されたデータ プラットフォームにより、AI モデルはオンライン環境とオフライン環境の両方でローカル データ ストアにシームレスにアクセスし、対話できるようになります。さらに、分散推論は、現在のデータ プライバシーとコンプライアンスの問題を解決することも期待されています。
私たちがインテリジェント エッジ デバイスに移行するにつれて、人工知能、エッジ コンピューティング、エッジ データベース管理の統合が、高速でリアルなデータの実現の前兆となります。 -時間とセキュリティソリューションの時代の中心。今後、組織は、AI ワークロードを効率的かつ安全に管理し、ビジネスでのデータの使用を簡素化するための高度なエッジ ポリシーの実装に集中できるようになります
以上がインタラクション手法の定義: モデルの定量化とエッジ人工知能の間のインタラクションの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

フロントエンド開発の世界では、VSCode はその強力な機能と豊富なプラグイン エコシステムにより、数多くの開発者に選ばれるツールとなっています。近年、人工知能技術の急速な発展に伴い、VSCode 上の AI コード アシスタントが登場し、開発者のコーディング効率が大幅に向上しました。 VSCode 上の AI コード アシスタントは雨後のキノコのように出現し、開発者のコーディング効率を大幅に向上させました。人工知能テクノロジーを使用してコードをインテリジェントに分析し、正確なコード補完、自動エラー修正、文法チェックなどの機能を提供することで、コーディング プロセス中の開発者のエラーや退屈な手作業を大幅に削減します。今日は、プログラミングの旅に役立つ 12 個の VSCode フロントエンド開発 AI コード アシスタントをお勧めします。
