データ処理効率を向上させるために適切な numpy バージョンを選択するには、特定のコード例が必要です
データ分析と機械学習の実践者にとって、多くの場合、Numpy を使用する必要があります。 Numpy には高速計算、ブロードキャスト、インデックス付け、ベクトル化操作の特性があり、大規模なデータ セットを効率的に処理できるためです。ただし、Numpy のバージョンが異なるとパフォーマンスが異なるため、適切なバージョンを選択することでデータ処理の効率を向上させることができます。
Numpy は、オープン ソースの Python 拡張ライブラリです。多数の貢献者による継続的な反復とメンテナンス、またその開発の盛んな点と幅広い用途のため、一部のバージョンとリリース候補は大きく異なります。データ処理効率を向上させるには、さまざまなバージョンのパフォーマンスを評価し、最適な Numpy バージョンを選択する必要があります。
ここでは、Numpy のさまざまなバージョンのパフォーマンスをテストするための簡単な例を使用します。2 つの n 次元配列を生成し、それからそれらは合計されます。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
この例では、Numpy の 3 つの異なるバージョンをテストし、そのパフォーマンスを出力しました。私のコンピュータでは、出力は次のようになります:
1 2 3 4 5 6 |
|
Numpy のどのバージョンを選択するのが最適ですか?この質問に対する答えは、実際に使用している Numpy のバージョンによって異なります。主流の Numpy バージョンでは、パフォーマンスに大きな違いはなく、主な違いは微調整にあります。
Numpy 1.16.4 (最新バージョン) より古いバージョンを使用している場合は、最新バージョンにアップグレードすることをお勧めします。バージョン 1.16.4 以降を使用している場合は、コードをベクトル化してパフォーマンスを向上させることができます。
Numpy を使用する場合、ループ制御フローの使用を回避し、代わりに Numpy が提供するベクトル化関数を使用できれば、多くの場合、より高いパフォーマンスが得られます。 。コードの一部をベクトル化する例を次に示します。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
|
この例では、2 つのバージョンのコードを比較して行列の各行の平均を計算し、そこから各要素を減算します。両方のバージョンのコードが 100 万要素の行列に対して同じパフォーマンスを発揮するかどうかをテストしました。この例をコンピューターで実行すると、出力は次のようになります。
1 2 |
|
コードの 2 番目のバージョンは、numpy のブロードキャスト メカニズムとベクトル化計算を利用し、ループと制御フロー。
概要
データ処理と分析用に Numpy のバージョンを選択するときは、そのパフォーマンスを評価してから、最適なバージョンを選択する必要があります。 Numpy が提供するベクトル化された関数とブロードキャスト メカニズムを利用することで、コードのパフォーマンスをさらに最適化し、データ処理効率を向上させることができます。
以上がデータ処理効率を向上させるために正しい numpy バージョンを選択してくださいの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。