mysqlsla慢查询分析工具使用笔记_MySQL
且该工具自带相似SQL语句去重的功能,能按照指定方式进行排序(比如分析慢查询日志的时候,让其按照SQL语句执行时间逆排序,就能很方便的定位出问题所在)
+ ------------- 安装mysqlsla慢查询日志分析工具 ------------- +
yum -y install perl-ExtUtils-CBuilder perl-ExtUtils-MakeMaker
yum -y install perl-DBI perl-DBD-MySQL
yum -y install perl-CPAN
perl -MCPAN -e shell
进入提示行,输入 yes
进入 CPAN
cpan > install YAML
cpan > install Time::HiRes
# 以上安装有提示东西都输入 yes
wget http://hackmysql.com/scripts/mysqlsla-2.03.tar.gz
tar xvfz mysqlsla-2.03.tar.gz
cd mysqlsla-2.03
perl Makefile.PL
make && make install
+ ------------------- mysqlsla工具使用介绍 ------------------------- +
基本使用方法:
mysqlsla -lt slow -sort t_sum -top 1000 /tmp/slow_query.log
输出结果类似于
Report for slow logs: slowquery.log
1.59k queries total, 69 unique
Sorted by 't_sum'
Grand Totals: Time 109 s, Lock 0 s, Rows sent 142.02k, Rows Examined 21.26M
______________________________________________________________________ 001 ___
Count : 26 (1.64%)
Time : 6.121513 s total, 235.443 ms avg, 202.917 ms to 311.527 ms max (5.63%)
95% of Time : 5.538256 s total, 230.761 ms avg, 202.917 ms to 271.056 ms max
Lock Time (s) : 2.407 ms total, 93 µs avg, 84 µs to 139 µs max (1.55%)
95% of Lock : 2.152 ms total, 90 µs avg, 84 µs to 99 µs max
Rows sent : 0 avg, 0 to 0 max (0.00%)
Rows examined : 153.68k avg, 153.67k to 153.69k max (18.79%)
Database :
Users :
root@localhost 127.0.0.1 : 100.00% (26) of query, 100.00% (1586) of all users
Query abstract:
SET timestamp=N; SELECT order_pid FROM wfc_delivery WHERE ( order_pid IN (S1) ) AND ( status IN (S3) ) GROUP BY order_pid;
Query sample:
SET timestamp=1387964641;
SELECT `order_pid` FROM `wfc_delivery` WHERE ( `order_pid` IN ('8831') ) AND ( `status` IN ('1','4','24') ) GROUP BY order_pid;
选项说明:
总查询次数 (queries total), 去重后的sql数量 (unique)
输出报表的内容排序(sorted by)
最重大的慢sql统计信息, 包括 平均执行时间, 等待锁时间, 结果行的总数, 扫描的行总数.
Count, sql的执行次数及占总的slow log数量的百分比.
Time, 执行时间, 包括总时间, 平均时间, 最小, 最大时间, 时间占到总慢sql时间的百分比.
95% of Time, 去除最快和最慢的sql, 覆盖率占95%的sql的执行时间.
Lock Time, 等待锁的时间.
95% of Lock , 95%的慢sql等待锁时间.
Rows sent, 结果行统计数量, 包括平均, 最小, 最大数量.
Rows examined, 扫描的行数量.
Database, 属于哪个数据库
Users, 哪个用户,IP, 占到所有用户执行的sql百分比
Query abstract, 抽象后的sql语句
Query sample, sql语句
mysqlsla常用参数说明:
1) -log-type (-lt) type logs:
通过这个参数来制定log的类型,主要有slow, general, binary, msl, udl,分析slow log时通过制定为slow
2) -sort:
制定使用什么参数来对分析结果进行排序,默认是按照t_sum来进行排序。
t_sum:按总时间排序
c_sum:按总次数排序
c_sum_p: sql语句执行次数占总执行次数的百分比。
3) -top:
显示sql的数量,默认是10,表示按规则取排序的前多少条
4)

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









完全なテーブルスキャンは、MySQLでインデックスを使用するよりも速い場合があります。特定のケースには以下が含まれます。1)データボリュームは小さい。 2)クエリが大量のデータを返すとき。 3)インデックス列が高度に選択的でない場合。 4)複雑なクエリの場合。クエリプランを分析し、インデックスを最適化し、オーバーインデックスを回避し、テーブルを定期的にメンテナンスすることにより、実際のアプリケーションで最良の選択をすることができます。

はい、MySQLはWindows 7にインストールできます。MicrosoftはWindows 7のサポートを停止しましたが、MySQLは引き続き互換性があります。ただし、インストールプロセス中に次のポイントに注意する必要があります。WindowsのMySQLインストーラーをダウンロードしてください。 MySQL(コミュニティまたはエンタープライズ)の適切なバージョンを選択します。インストールプロセス中に適切なインストールディレクトリと文字セットを選択します。ルートユーザーパスワードを設定し、適切に保ちます。テストのためにデータベースに接続します。 Windows 7の互換性とセキュリティの問題に注意してください。サポートされているオペレーティングシステムにアップグレードすることをお勧めします。

INNODBのフルテキスト検索機能は非常に強力であり、データベースクエリの効率と大量のテキストデータを処理する能力を大幅に改善できます。 1)INNODBは、倒立インデックスを介してフルテキスト検索を実装し、基本的および高度な検索クエリをサポートします。 2)一致を使用してキーワードを使用して、ブールモードとフレーズ検索を検索、サポートします。 3)最適化方法には、単語セグメンテーションテクノロジーの使用、インデックスの定期的な再構築、およびパフォーマンスと精度を改善するためのキャッシュサイズの調整が含まれます。

クラスター化されたインデックスと非クラスター化されたインデックスの違いは次のとおりです。1。クラスター化されたインデックスは、インデックス構造にデータを保存します。これは、プライマリキーと範囲でクエリするのに適しています。 2.非クラスター化されたインデックスストアは、インデックスキー値とデータの行へのポインターであり、非プリマリーキー列クエリに適しています。

MySQLは、オープンソースのリレーショナルデータベース管理システムです。 1)データベースとテーブルの作成:createdatabaseおよびcreateTableコマンドを使用します。 2)基本操作:挿入、更新、削除、選択。 3)高度な操作:参加、サブクエリ、トランザクション処理。 4)デバッグスキル:構文、データ型、およびアクセス許可を確認します。 5)最適化の提案:インデックスを使用し、選択*を避け、トランザクションを使用します。

MySQLデータベースでは、ユーザーとデータベースの関係は、アクセス許可と表によって定義されます。ユーザーには、データベースにアクセスするためのユーザー名とパスワードがあります。許可は助成金コマンドを通じて付与され、テーブルはCreate Tableコマンドによって作成されます。ユーザーとデータベースの関係を確立するには、データベースを作成し、ユーザーを作成してから許可を付与する必要があります。

MySQLは、Bツリー、ハッシュ、フルテキスト、および空間の4つのインデックスタイプをサポートしています。 1.B-Treeインデックスは、等しい値検索、範囲クエリ、ソートに適しています。 2。ハッシュインデックスは、等しい値検索に適していますが、範囲のクエリとソートをサポートしていません。 3.フルテキストインデックスは、フルテキスト検索に使用され、大量のテキストデータの処理に適しています。 4.空間インデックスは、地理空間データクエリに使用され、GISアプリケーションに適しています。

データ統合の簡素化:AmazonrdsmysqlとRedshiftのゼロETL統合効率的なデータ統合は、データ駆動型組織の中心にあります。従来のETL(抽出、変換、負荷)プロセスは、特にデータベース(AmazonrdsmysQlなど)をデータウェアハウス(Redshiftなど)と統合する場合、複雑で時間がかかります。ただし、AWSは、この状況を完全に変えたゼロETL統合ソリューションを提供し、RDSMYSQLからRedshiftへのデータ移行のための簡略化されたほぼリアルタイムソリューションを提供します。この記事では、RDSMysQl Zero ETLのRedshiftとの統合に飛び込み、それがどのように機能するか、それがデータエンジニアと開発者にもたらす利点を説明します。
