目次
ハイイロオオカミ アルゴリズムのインスピレーション
ホームページ ウェブ3.0 Gray Wolf 最適化アルゴリズム (GWO) とその長所と短所の詳細な分析

Gray Wolf 最適化アルゴリズム (GWO) とその長所と短所の詳細な分析

Jan 19, 2024 pm 07:48 PM
メタヒューリスティックス アルゴリズムの概念

ハイイロオオカミ最適化アルゴリズム (GWO) は、自然界のハイイロオオカミのリーダーシップ階層と狩猟メカニズムをシミュレートする個体群ベースのメタヒューリスティック アルゴリズムです。

ハイイロオオカミ アルゴリズムのインスピレーション

1. ハイイロオオカミは最上位の捕食者であると考えられており、食物連鎖の頂点に位置します。

2. ハイイロオオカミは集団で生活すること (群れで生活すること) を好み、各群れには平均 5 ~ 12 頭のオオカミがいます。

3. ハイイロオオカミには、以下に示すように、非常に厳格な社会的支配階層があります:

灰狼优化算法(GWO)详解 灰狼算法的优缺点

アルファオオカミ:

# # アルファオオカミはハイイロオオカミの群れ全体で支配的な地位を占めており、ハイイロオオカミの群れ全体を指揮する権利を持っています。

アルゴリズムの適用において、Alpha Wolf は最良のソリューションの 1 つであり、最適化アルゴリズムによって生成される最適なソリューションです。

ベータ オオカミ:

ベータ オオカミはアルファ オオカミに定期的に報告し、アルファ オオカミが最善の決定を下せるよう支援します。

アルゴリズム アプリケーションでは、ベータ オオカミは、問題に対して考えられるすべての解決策の中で次善の解決策と呼ぶことができます。いくつかのソリューションが最適なソリューションに適さない場合は、そのソリューションが採用されます。

デルタ ウルフ:

デルタ ウルフはベータ ウルフに従属し、アルファとベータ ウルフに継続的なアップデートを提供し、オメガ ウルフの上位にあります。

アルゴリズムの適用において、Delta Wolf は、問題に対する考えられるすべての解決策の中で 3 番目に優れた解決策と言えます。ただし、考えられるすべてのソリューションについて、3 番目に最適なソリューションは、最適なソリューションと 2 番目に適合したソリューションに基づいて評価されます。

オメガ オオカミ:

オメガ オオカミは、狩猟と若いオオカミの世話を担当します。

アルゴリズム アプリケーションでは、オメガ ウルフはすべての可能な解によって生成された最適解と呼ぶことができ、最適解は 3 番目の最適解によってのみ評価され、最良の解とは比較されません。 。

ハイイロオオカミは、群れ全体で獲物を狩る特別な狩猟技術に従います。選ばれた獲物はオメガオオカミによって群れから引き離され、選ばれた獲物はデルタオオカミとベータオオカミによって追いかけられ、攻撃されます。 Gray Wolf アルゴリズムは、この法則に従って最適化され、さまざまな組み込み関数を使用して最適なソリューションを生成します。

Grey Wolf アルゴリズム ロジック

Grey Wolf 最適化アルゴリズム (GWO) は、通常、データ操作時間を短縮します。このアルゴリズムは、複雑な問題全体を複数のサブセットに分解し、各サブセットにエージェントを提供します。ハイイロオオカミの群れの全体的な階層と同様に、すべてのソリューションを出力し、それらをランク付けして、最適なソリューションを生成します。

したがって、Grey Wolf 最適化アルゴリズム (GWO) は、タスクを繰り返し実装して最適なソリューションを生成する必要があります。最適なソリューションが決定されると、アルゴリズムは反復を停止します。

ただし、最適解は絶対的なものではなく、まれにハイイロオオカミ アルゴリズムが問題に対して次善の解を出力することもあります。

Grey Wolf アルゴリズムの長所と短所

利点: 他の最適化アルゴリズムと比較して、Grey Wolf アルゴリズムの最適化プロセスは、最初に答えを取得し、次に異なる答えを比較してそれに応じて応答するため、高速です。それらを並べ替えて最適なソリューションを出力します。

欠点: Gray Wolf 最適化アルゴリズムはヒューリスティックな最適化アルゴリズムであり、生成される最適解は元の最適解に近いだけであり、問​​題に対する真の最適解ではありません。

以上がGray Wolf 最適化アルゴリズム (GWO) とその長所と短所の詳細な分析の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Gray Wolf 最適化アルゴリズム (GWO) とその長所と短所の詳細な分析 Gray Wolf 最適化アルゴリズム (GWO) とその長所と短所の詳細な分析 Jan 19, 2024 pm 07:48 PM

ハイイロオオカミ最適化アルゴリズム (GWO) は、自然界のハイイロオオカミのリーダーシップ階層と狩猟メカニズムをシミュレートする個体群ベースのメタヒューリスティック アルゴリズムです。ハイイロオオカミ アルゴリズムのインスピレーション 1. ハイイロオオカミは頂点捕食者であると考えられており、食物連鎖の頂点に位置します。 2. ハイイロオオカミは集団で生活すること(集団生活)を好み、各群れには平均 5 ~ 12 頭のオオカミがいます。 3. ハイイロオオカミには、以下に示すように、非常に厳格な社会的支配階層があります。 アルファオオカミ: アルファオオカミは、ハイイロオオカミのグループ全体で支配的な地位を占め、ハイイロオオカミのグループ全体を指揮する権利を持っています。アルゴリズムの適用において、Alpha Wolf は最良のソリューションの 1 つであり、最適化アルゴリズムによって生成される最適なソリューションです。ベータ オオカミ: ベータ オオカミはアルファ オオカミに定期的に報告し、アルファ オオカミが最善の決定を下せるように支援します。アルゴリズム アプリケーションでは、Beta Wolf は次のことができます。

Sparrow Search Algorithm (SSA) の原理、モデル、構成を分析する Sparrow Search Algorithm (SSA) の原理、モデル、構成を分析する Jan 19, 2024 pm 10:27 PM

スズメ検索アルゴリズム (SSA) は、スズメの対捕食行動と採餌行動に基づいたメタヒューリスティック最適化アルゴリズムです。スズメの採餌行動は、生産者とスカベンジャーの 2 つの主なタイプに分類できます。生産者は積極的に食料を探しますが、スカベンジャーは生産者からの食料を奪い合います。スズメ検索アルゴリズム (SSA) の原理 スズメ検索アルゴリズム (SSA) では、各スズメは隣のスズメの行動に細心の注意を払います。さまざまな採餌戦略を採用することで、個体は蓄えられたエネルギーを効率的に利用して、より多くの食物を追求することができます。さらに、鳥は探索空間では捕食者に対してより脆弱であるため、より安全な場所を見つける必要があります。コロニーの中心にいる鳥は、隣の鳥の近くにいることで、自分自身の危険範囲を最小限に抑えることができます。鳥は捕食者を見つけると、警報を発します。

ネストされたサンプリング アルゴリズムの基本原理と実装プロセスを調べる ネストされたサンプリング アルゴリズムの基本原理と実装プロセスを調べる Jan 22, 2024 pm 09:51 PM

ネストされたサンプリング アルゴリズムは、複雑な確率分布の下で積分または合計を計算するために使用される効率的なベイズ統計推論アルゴリズムです。これは、パラメーター空間を等しい体積の複数のハイパーキューブに分解し、最小体積のハイパーキューブの 1 つを徐々に反復的に「押し出し」、そのハイパーキューブをランダムなサンプルで満たして、確率分布の整数値をより適切に推定することによって機能します。ネストされたサンプリング アルゴリズムは、継続的な反復を通じて、高精度の整数値とパラメーター空間の境界を取得でき、モデルの比較、パラメーターの推定、モデルの選択などの統計的問題に適用できます。このアルゴリズムの中心的な考え方は、複雑な積分問題を一連の単純な積分問題に変換し、パラメーター空間の体積を徐々に減らすことで実際の積分値に近づくことです。各反復ステップはパラメータ空間からランダムにサンプリングします。

id3 アルゴリズムにおける情報獲得の役割は何ですか? id3 アルゴリズムにおける情報獲得の役割は何ですか? Jan 23, 2024 pm 11:27 PM

ID3 アルゴリズムは、決定木学習の基本アルゴリズムの 1 つです。各特徴の情報ゲインを計算して決定木を生成することにより、最適な分割点を選択します。情報ゲインは ID3 アルゴリズムの重要な概念であり、分類タスクに対する特徴の寄与を測定するために使用されます。この記事では、ID3 アルゴリズムにおける情報ゲインの概念、計算方法、応用について詳しく紹介します。 1. 情報エントロピーの概念 情報エントロピーは情報理論の概念であり、確率変数の不確実性を測定します。離散乱数の場合、p(x_i) は乱数 X が値 x_i をとる確率を表します。手紙

数値最適化原理とWhale Optimization Algorithm (WOA) の分析 数値最適化原理とWhale Optimization Algorithm (WOA) の分析 Jan 19, 2024 pm 07:27 PM

Whale Optimization Algorithm (WOA) は、ザトウクジラの狩猟行動をシミュレートし、数値問題の最適化に使用される、自然にヒントを得たメタヒューリスティック最適化アルゴリズムです。 Whale Optimization Algorithm (WOA) は、ランダムなソリューションのセットから開始し、ランダムに選択された検索エージェント、または各反復での検索エージェントの位置更新を通じてこれまでの最良のソリューションに基づいて最適化します。 Whale Optimization アルゴリズムのインスピレーション Whale Optimization アルゴリズムは、ザトウクジラの狩猟行動からインスピレーションを受けています。ザトウクジラは、オキアミや魚の群れなど、水面近くにある餌を好みます。そのため、ザトウクジラは狩りの際、ボトムアップスパイラルに泡を吹きながら餌を集めて泡のネットワークを形成します。 「上向きスパイラル」操縦では、ザトウクジラは約 12 メートル潜水し、獲物の周りにらせん状の泡を形成し始め、上向きに泳ぎます。

スケール不変特徴量 (SIFT) アルゴリズム スケール不変特徴量 (SIFT) アルゴリズム Jan 22, 2024 pm 05:09 PM

スケール不変特徴変換 (SIFT) アルゴリズムは、画像処理およびコンピューター ビジョンの分野で使用される特徴抽出アルゴリズムです。このアルゴリズムは、コンピュータ ビジョン システムにおけるオブジェクト認識とマッチングのパフォーマンスを向上させるために 1999 年に提案されました。 SIFT アルゴリズムは堅牢かつ正確であり、画像認識、3 次元再構成、ターゲット検出、ビデオ追跡などの分野で広く使用されています。複数のスケール空間内のキーポイントを検出し、キーポイントの周囲の局所特徴記述子を抽出することにより、スケール不変性を実現します。 SIFT アルゴリズムの主なステップには、スケール空間の構築、キー ポイントの検出、キー ポイントの位置決め、方向の割り当て、および特徴記述子の生成が含まれます。これらのステップを通じて、SIFT アルゴリズムは堅牢でユニークな特徴を抽出することができ、それによって効率的な画像処理を実現します。

Wu-Manber アルゴリズムと Python 実装手順の概要 Wu-Manber アルゴリズムと Python 実装手順の概要 Jan 23, 2024 pm 07:03 PM

Wu-Manber アルゴリズムは、文字列を効率的に検索するために使用される文字列一致アルゴリズムです。これは、Boyer-Moore アルゴリズムと Knuth-Morris-Pratt アルゴリズムの利点を組み合わせたハイブリッド アルゴリズムで、高速かつ正確なパターン マッチングを提供します。 Wu-Manber アルゴリズムのステップ 1. パターンの考えられる各部分文字列を、その部分文字列が出現するパターン位置にマップするハッシュ テーブルを作成します。 2. このハッシュ テーブルは、テキスト内のパターンの潜在的な開始位置を迅速に特定するために使用されます。 3. テキストを繰り返し処理し、各文字をパターン内の対応する文字と比較します。 4. 文字が一致する場合は、次の文字に移動して比較を続行できます。 5. 文字が一致しない場合は、ハッシュ テーブルを使用して、パターン内の次の文字候補を決定できます。

ベイジアン手法とベイジアン ネットワークの概念を詳しく調べる ベイジアン手法とベイジアン ネットワークの概念を詳しく調べる Jan 24, 2024 pm 01:06 PM

ベイジアン法の概念 ベイズ法とは、主に機械学習の分野で用いられる統計的推論定理です。事前の知識と観測データを組み合わせることにより、パラメーターの推定、モデルの選択、モデルの平均化、予測などのタスクを実行します。ベイジアン手法は、不確実性に柔軟に対処し、事前知識を継続的に更新することで学習プロセスを改善できるという点で独特です。この方法は、サンプルが小さい問題や複雑なモデルを扱う場合に特に効果的であり、より正確で堅牢な推論結果を提供できます。ベイジアン手法は、ベイズの定理に基づいています。ベイズの定理では、何らかの証拠が与えられた仮説の確率は、証拠の確率に事前確率を乗じたものに等しいと述べられています。これは次のように書くことができます: P(H|E)=P(E|H)P(H) ここで、P(H|E) は証拠 E、P(