Thoughts on Small Datum – Part 3_MySQL
Background: If you did not read my first blog post about why I am sharing my thoughts on the benchmarks published by Mark Callaghan on Small Datum you may want to skim through it now for a little context:“Thoughts on Small Datum – Part 1”
~~~~~~~~~~~~~~~~~~~~~~~~
Last time, in“Thoughts on Small Datum – Part 2”I shared my cliff notes and a graph onMark Callaghan’s (@markcallaghan) March 11th insertion rate benchmarks using flash storage media. In those tests he comparesMySQL outfitted with theInnoDBstorage engine against two distributions ofMongoDB: basic MongoDB fromMongoDB, Inc.andTokuMX(the high-performance distribution of MongoDB from Tokutek).
Later, in his March 24th“TokuMX, MongoDB and InnoDB Versus the Insert Benchmark with Disks”Mark presents similar benchmark findings for a new set of insertion rate tests using a different benchmark and the same DBMS products. This time however he uses servers configured with traditional disk storage media instead of flash. In addition he does a number of things to configure the products and tests differently than he did in the flash storage benchmarks.
As the saying goes, a picture is worth a thousand words. The X-axis here is the number of rows being inserted at each stage of the test. The Y-axis is the insertion rate recorded at those levels (and in this case,biggeris better).
As you can see, Mark found that TokuMX outperforms MySQL/InnoDB as well as basic MongoDB. He also found that shortly after 500M rows it became impractical to test MongoDB (it was taking unreasonably long time to let the test run to completion). The same thing happened with MySQL/InnoDB after 1.6B rows. TokuMX was still running strong at 2B rows.
Note: Mark tests several different configurations of MongoDB, trying to find the optimum configuration. For the purposes of my visual aid I selected the fastest / best MongoDB configuration at each level of 100M rows. That’s not very scientific of me but I wanted to be as fair as possible in the visual comparison.
Bottom Line:Like the flash storage test covered last time, the tests with traditional disk storage show that both MySQL with InnoDB and TokuMX significantly outperform basic MongoDB in benchmarks testing for write-intensive applications. Both MongoDB (540M rows) and MySQL/InnoDB (1.6B rows) become unresponsive in these tests as the database gets large.
This suggests that if your application is a write-intensive NoSQL one, and your servers are outfitted with traditional disk storage, it will perform significantly better on the TokuMX high-performance distribution of MongoDB. And that, with TokuMX performance will not degrade significantly as the database grows. It also shows basic MongoDB may not even be suitable for write-intensive applications that are expected to grow beyond 500M rows.
One footnote: TokuDB (the Tokutek high-performance MySQL storage engine alternative to InnoDB that employees the same underlying technology as TokuMX) isnotcovered in Mark’s benchmark. That’s too bad because it delivers better performance and scalability than InnoDB for your NewSQL applications.
You can read all the gory details on Mark’sMarch 24th insertion rate benchmark here. And, you can download and tryTokuMX for yourself (for free) here.
As always, your thoughts and comments are welcome below. You can also reach me on Twitter via@dcrosenlund.
Next time, in Thoughts on Small Datum – Part 4, this marketer’s summary and graphs for Mark’sIO-bound point queries tests using sysbench.

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









この記事では、MySQLのAlter Tableステートメントを使用して、列の追加/ドロップ、テーブル/列の名前の変更、列データ型の変更など、テーブルを変更することについて説明します。

記事では、証明書の生成と検証を含むMySQL用のSSL/TLS暗号化の構成について説明します。主な問題は、セルフ署名証明書のセキュリティへの影響を使用することです。[文字カウント:159]

記事では、MySQLで大規模なデータセットを処理するための戦略について説明します。これには、パーティション化、シャード、インデックス作成、クエリ最適化などがあります。

記事では、MySQLワークベンチやPHPMyAdminなどの人気のあるMySQL GUIツールについて説明し、初心者と上級ユーザーの機能と適合性を比較します。[159文字]

この記事では、ドロップテーブルステートメントを使用してMySQLのドロップテーブルについて説明し、予防策とリスクを強調しています。これは、バックアップなしでアクションが不可逆的であることを強調し、回復方法と潜在的な生産環境の危険を詳述しています。

INNODBのフルテキスト検索機能は非常に強力であり、データベースクエリの効率と大量のテキストデータを処理する能力を大幅に改善できます。 1)INNODBは、倒立インデックスを介してフルテキスト検索を実装し、基本的および高度な検索クエリをサポートします。 2)一致を使用してキーワードを使用して、ブールモードとフレーズ検索を検索、サポートします。 3)最適化方法には、単語セグメンテーションテクノロジーの使用、インデックスの定期的な再構築、およびパフォーマンスと精度を改善するためのキャッシュサイズの調整が含まれます。

記事では、外部キーを使用してデータベース内の関係を表すことで、ベストプラクティス、データの完全性、および避けるべき一般的な落とし穴に焦点を当てています。

この記事では、クエリパフォーマンスを強化するために、PostgreSQL、MySQL、MongoDBなどのさまざまなデータベースでJSON列にインデックスの作成について説明します。特定のJSONパスのインデックス作成の構文と利点を説明し、サポートされているデータベースシステムをリストします。
