Python の一般的なフロー制御構造は何ですか?
Python にはどのような一般的なフロー制御構造があるかをマスターしてください。
Python プログラミングにおいて、フロー制御構造は、プログラムの実行順序と条件判断を制御するために使用される強力なツールです。 Python では、一般的なフロー制御構造には、条件ステートメント、ループ ステートメント、例外処理ステートメントが含まれます。これらの各構成を 1 つずつ説明し、具体的なコード例を示してみましょう。
- 条件ステートメント (if ステートメント):
条件ステートメントは、true または false の条件に基づいてさまざまなコード ブロックを実行するために使用されます。 Python の if ステートメントの構文は次のとおりです。
if <条件1>: <代码块1> elif <条件2>: <代码块2> else: <代码块3>
ここで、条件は、実行するコード ブロックを結果によって決定する式です。以下に例を示します。
score = 90 if score >= 90: print("优秀") elif score >= 80: print("良好") else: print("及格")
- ループ ステートメント:
ループ ステートメントは、特定の条件が満たされてループが終了するまで、コード ブロックを繰り返し実行できます。 Python には、for ループと while ループという 2 つの一般的なループ ステートメントがあります。
- for ループ:
for ループは、反復可能なオブジェクト (リスト、タプル、文字列など) を走査し、その中の各要素を順番に実行するために使用されます。 for ループの構文は次のとおりです。
for <变量> in <可迭代对象>: <代码块>
以下はリストを走査する例です。
fruits = ['apple', 'banana', 'orange'] for fruit in fruits: print(fruit)
- while ループ:
while ループを繰り返します。条件が満たされなくなるまで、条件ブロックの true または false 条件に従ってコードを実行します。 while ループの構文は次のとおりです。
while <条件>: <代码块>
次に、while ループを使用して累積合計を計算する例を示します。
sum = 0 i = 1 while i <= 100: sum += i i += 1 print(sum)
- 例外処理ステートメント ( Try-Except ステートメント):
例外処理ステートメントは、プログラム内の例外をキャプチャして処理するために使用されます。コードの実行中にエラーが発生すると、プログラムは実行を停止し、例外をスローします。 Try-Except ステートメントを使用すると、例外が発生したときに例外を処理し、プログラムの終了を回避できます。例外処理ステートメントの構文は次のとおりです。
try: <代码块> except <异常类型>: <处理异常的代码块>
次に、ゼロ除算例外をキャッチする例を示します。
num1 = 10 num2 = 0 try: result = num1 / num2 print(result) except ZeroDivisionError: print("除零错误")
上記では、一般的なフロー制御を紹介しました。 Python の構造 (条件ステートメント、ループ ステートメント、例外処理ステートメントなど)。これらの構造を習得すると、プログラムの実行フローをより適切に制御できるだけでなく、コードがより読みやすく堅牢になります。この記事がお役に立てば幸いです!
以上がPython の一般的なフロー制御構造は何ですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

DockerはLinuxカーネル機能を使用して、効率的で孤立したアプリケーションランニング環境を提供します。その作業原則は次のとおりです。1。ミラーは、アプリケーションを実行するために必要なすべてを含む読み取り専用テンプレートとして使用されます。 2。ユニオンファイルシステム(UnionFS)は、違いを保存するだけで、スペースを節約し、高速化する複数のファイルシステムをスタックします。 3.デーモンはミラーとコンテナを管理し、クライアントはそれらをインタラクションに使用します。 4。名前空間とcgroupsは、コンテナの分離とリソースの制限を実装します。 5.複数のネットワークモードは、コンテナの相互接続をサポートします。これらのコア概念を理解することによってのみ、Dockerをよりよく利用できます。

CentOSシステムでのPytorchモデルの効率的なトレーニングには手順が必要であり、この記事では詳細なガイドが提供されます。 1。環境の準備:Pythonおよび依存関係のインストール:Centosシステムは通常Pythonをプリインストールしますが、バージョンは古い場合があります。 YumまたはDNFを使用してPython 3をインストールし、PIP:sudoyumupdatepython3(またはsudodnfupdatepython3)、pip3install-upgradepipをアップグレードすることをお勧めします。 cuda and cudnn(GPU加速):nvidiagpuを使用する場合は、cudatoolをインストールする必要があります

Pytorch GPUアクセラレーションを有効にすることで、CentOSシステムでは、PytorchのCUDA、CUDNN、およびGPUバージョンのインストールが必要です。次の手順では、プロセスをガイドします。CUDAおよびCUDNNのインストールでは、CUDAバージョンの互換性が決定されます。NVIDIA-SMIコマンドを使用して、NVIDIAグラフィックスカードでサポートされているCUDAバージョンを表示します。たとえば、MX450グラフィックカードはCUDA11.1以上をサポートする場合があります。 cudatoolkitのダウンロードとインストール:nvidiacudatoolkitの公式Webサイトにアクセスし、グラフィックカードでサポートされている最高のCUDAバージョンに従って、対応するバージョンをダウンロードしてインストールします。 cudnnライブラリをインストールする:

PythonとJavaScriptには、コミュニティ、ライブラリ、リソースの観点から、独自の利点と短所があります。 1)Pythonコミュニティはフレンドリーで初心者に適していますが、フロントエンドの開発リソースはJavaScriptほど豊富ではありません。 2)Pythonはデータサイエンスおよび機械学習ライブラリで強力ですが、JavaScriptはフロントエンド開発ライブラリとフレームワークで優れています。 3)どちらも豊富な学習リソースを持っていますが、Pythonは公式文書から始めるのに適していますが、JavaScriptはMDNWebDocsにより優れています。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

CentOSでPytorchバージョンを選択する場合、次の重要な要素を考慮する必要があります。1。CUDAバージョンの互換性GPUサポート:NVIDIA GPUを使用してGPU加速度を活用したい場合は、対応するCUDAバージョンをサポートするPytorchを選択する必要があります。 NVIDIA-SMIコマンドを実行することでサポートされているCUDAバージョンを表示できます。 CPUバージョン:GPUをお持ちでない場合、またはGPUを使用したくない場合は、PytorchのCPUバージョンを選択できます。 2。PythonバージョンPytorch

NGINXのインストールをインストールするには、次の手順に従う必要があります。開発ツール、PCRE-Devel、OpenSSL-Develなどの依存関係のインストール。 nginxソースコードパッケージをダウンロードし、それを解凍してコンパイルしてインストールし、/usr/local/nginxとしてインストールパスを指定します。 nginxユーザーとユーザーグループを作成し、アクセス許可を設定します。構成ファイルnginx.confを変更し、リスニングポートとドメイン名/IPアドレスを構成します。 nginxサービスを開始します。依存関係の問題、ポート競合、構成ファイルエラーなど、一般的なエラーに注意する必要があります。パフォーマンスの最適化は、キャッシュをオンにしたり、ワーカープロセスの数を調整するなど、特定の状況に応じて調整する必要があります。

CentOSシステムのPytorchデータを効率的に処理するには、次の手順が必要です。依存関係のインストール:システムを最初に更新し、Python3とPIPをインストールします。仮想環境構成(推奨):Condaを使用して、新しい仮想環境を作成およびアクティブにします。例:Condacreate-N
