Pythonを使ってB+ツリーの削除操作コードを書く
B ツリーの削除操作では、まず削除されたノードの場所を見つけて、次にノードのキーの数を決定する必要があります。
ノード内のキーの数が最小数を超えた場合は、ノードを直接削除してください。
以下に示すように、「40」を削除します。

ノード内に正確な最小数のキーがある場合、削除には兄弟ノードから借用し、中間キーを追加する必要があります。兄弟ノードから親ノードへ。以下に示すように、「5」を削除します:

コンテンツ ノードを削除します。ノード内のキーの数が最小数を超えている場合は、単に削除します。リーフ ノードからキーを削除し、内部ノードからキーを削除します。内部ノードの空いたスペースを順序サクセサで埋めます。以下に示すように、「45」を削除します:

コンテンツ ノードを削除します。ノード内に正確な最小数のキーがある場合は、コンテンツ ノードを削除します。キーと直接 兄弟はキーを借用し、借用したキーでインデックス内の空のスペースを埋めます。以下に示すように、「35」を削除します。



#Python は B ツリー削除操作を実装します
import math # 创建节点 class Node: def __init__(self, order): self.order = order self.values = [] self.keys = [] self.nextKey = None self.parent = None self.check_leaf = False # 插入叶子 def insert_at_leaf(self, leaf, value, key): if (self.values): temp1 = self.values for i in range(len(temp1)): if (value == temp1[i]): self.keys[i].append(key) break elif (value < temp1[i]): self.values = self.values[:i] + [value] + self.values[i:] self.keys = self.keys[:i] + [[key]] + self.keys[i:] break elif (i + 1 == len(temp1)): self.values.append(value) self.keys.append([key]) break else: self.values = [value] self.keys = [[key]] # B+树 class BplusTree: def __init__(self, order): self.root = Node(order) self.root.check_leaf = True # 插入节点 def insert(self, value, key): value = str(value) old_node = self.search(value) old_node.insert_at_leaf(old_node, value, key) if (len(old_node.values) == old_node.order): node1 = Node(old_node.order) node1.check_leaf = True node1.parent = old_node.parent mid = int(math.ceil(old_node.order / 2)) - 1 node1.values = old_node.values[mid + 1:] node1.keys = old_node.keys[mid + 1:] node1.nextKey = old_node.nextKey old_node.values = old_node.values[:mid + 1] old_node.keys = old_node.keys[:mid + 1] old_node.nextKey = node1 self.insert_in_parent(old_node, node1.values[0], node1) def search(self, value): current_node = self.root while(current_node.check_leaf == False): temp2 = current_node.values for i in range(len(temp2)): if (value == temp2[i]): current_node = current_node.keys[i + 1] break elif (value < temp2[i]): current_node = current_node.keys[i] break elif (i + 1 == len(current_node.values)): current_node = current_node.keys[i + 1] break return current_node # 查找节点 def find(self, value, key): l = self.search(value) for i, item in enumerate(l.values): if item == value: if key in l.keys[i]: return True else: return False return False # 在父级插入 def insert_in_parent(self, n, value, ndash): if (self.root == n): rootNode = Node(n.order) rootNode.values = [value] rootNode.keys = [n, ndash] self.root = rootNode n.parent = rootNode ndash.parent = rootNode return parentNode = n.parent temp3 = parentNode.keys for i in range(len(temp3)): if (temp3[i] == n): parentNode.values = parentNode.values[:i] + \ [value] + parentNode.values[i:] parentNode.keys = parentNode.keys[:i + 1] + [ndash] + parentNode.keys[i + 1:] if (len(parentNode.keys) > parentNode.order): parentdash = Node(parentNode.order) parentdash.parent = parentNode.parent mid = int(math.ceil(parentNode.order / 2)) - 1 parentdash.values = parentNode.values[mid + 1:] parentdash.keys = parentNode.keys[mid + 1:] value_ = parentNode.values[mid] if (mid == 0): parentNode.values = parentNode.values[:mid + 1] else: parentNode.values = parentNode.values[:mid] parentNode.keys = parentNode.keys[:mid + 1] for j in parentNode.keys: j.parent = parentNode for j in parentdash.keys: j.parent = parentdash self.insert_in_parent(parentNode, value_, parentdash) # 删除节点 def delete(self, value, key): node_ = self.search(value) temp = 0 for i, item in enumerate(node_.values): if item == value: temp = 1 if key in node_.keys[i]: if len(node_.keys[i]) > 1: node_.keys[i].pop(node_.keys[i].index(key)) elif node_ == self.root: node_.values.pop(i) node_.keys.pop(i) else: node_.keys[i].pop(node_.keys[i].index(key)) del node_.keys[i] node_.values.pop(node_.values.index(value)) self.deleteEntry(node_, value, key) else: print("Value not in Key") return if temp == 0: print("Value not in Tree") return # 删除条目 def deleteEntry(self, node_, value, key): if not node_.check_leaf: for i, item in enumerate(node_.keys): if item == key: node_.keys.pop(i) break for i, item in enumerate(node_.values): if item == value: node_.values.pop(i) break if self.root == node_ and len(node_.keys) == 1: self.root = node_.keys[0] node_.keys[0].parent = None del node_ return elif (len(node_.keys) < int(math.ceil(node_.order / 2)) and node_.check_leaf == False) or (len(node_.values) < int(math.ceil((node_.order - 1) / 2)) and node_.check_leaf == True): is_predecessor = 0 parentNode = node_.parent PrevNode = -1 NextNode = -1 PrevK = -1 PostK = -1 for i, item in enumerate(parentNode.keys): if item == node_: if i > 0: PrevNode = parentNode.keys[i - 1] PrevK = parentNode.values[i - 1] if i < len(parentNode.keys) - 1: NextNode = parentNode.keys[i + 1] PostK = parentNode.values[i] if PrevNode == -1: ndash = NextNode value_ = PostK elif NextNode == -1: is_predecessor = 1 ndash = PrevNode value_ = PrevK else: if len(node_.values) + len(NextNode.values) < node_.order: ndash = NextNode value_ = PostK else: is_predecessor = 1 ndash = PrevNode value_ = PrevK if len(node_.values) + len(ndash.values) < node_.order: if is_predecessor == 0: node_, ndash = ndash, node_ ndash.keys += node_.keys if not node_.check_leaf: ndash.values.append(value_) else: ndash.nextKey = node_.nextKey ndash.values += node_.values if not ndash.check_leaf: for j in ndash.keys: j.parent = ndash self.deleteEntry(node_.parent, value_, node_) del node_ else: if is_predecessor == 1: if not node_.check_leaf: ndashpm = ndash.keys.pop(-1) ndashkm_1 = ndash.values.pop(-1) node_.keys = [ndashpm] + node_.keys node_.values = [value_] + node_.values parentNode = node_.parent for i, item in enumerate(parentNode.values): if item == value_: p.values[i] = ndashkm_1 break else: ndashpm = ndash.keys.pop(-1) ndashkm = ndash.values.pop(-1) node_.keys = [ndashpm] + node_.keys node_.values = [ndashkm] + node_.values parentNode = node_.parent for i, item in enumerate(p.values): if item == value_: parentNode.values[i] = ndashkm break else: if not node_.check_leaf: ndashp0 = ndash.keys.pop(0) ndashk0 = ndash.values.pop(0) node_.keys = node_.keys + [ndashp0] node_.values = node_.values + [value_] parentNode = node_.parent for i, item in enumerate(parentNode.values): if item == value_: parentNode.values[i] = ndashk0 break else: ndashp0 = ndash.keys.pop(0) ndashk0 = ndash.values.pop(0) node_.keys = node_.keys + [ndashp0] node_.values = node_.values + [ndashk0] parentNode = node_.parent for i, item in enumerate(parentNode.values): if item == value_: parentNode.values[i] = ndash.values[0] break if not ndash.check_leaf: for j in ndash.keys: j.parent = ndash if not node_.check_leaf: for j in node_.keys: j.parent = node_ if not parentNode.check_leaf: for j in parentNode.keys: j.parent = parentNode # 输出B+树 def printTree(tree): lst = [tree.root] level = [0] leaf = None flag = 0 lev_leaf = 0 node1 = Node(str(level[0]) + str(tree.root.values)) while (len(lst) != 0): x = lst.pop(0) lev = level.pop(0) if (x.check_leaf == False): for i, item in enumerate(x.keys): print(item.values) else: for i, item in enumerate(x.keys): print(item.values) if (flag == 0): lev_leaf = lev leaf = x flag = 1 record_len = 3 bplustree = BplusTree(record_len) bplustree.insert('5', '33') bplustree.insert('15', '21') bplustree.insert('25', '31') bplustree.insert('35', '41') bplustree.insert('45', '10') printTree(bplustree) if(bplustree.find('5', '34')): print("Found") else: print("Not found")
以上がPythonを使ってB+ツリーの削除操作コードを書くの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









INNODBのフルテキスト検索機能は非常に強力であり、データベースクエリの効率と大量のテキストデータを処理する能力を大幅に改善できます。 1)INNODBは、倒立インデックスを介してフルテキスト検索を実装し、基本的および高度な検索クエリをサポートします。 2)一致を使用してキーワードを使用して、ブールモードとフレーズ検索を検索、サポートします。 3)最適化方法には、単語セグメンテーションテクノロジーの使用、インデックスの定期的な再構築、およびパフォーマンスと精度を改善するためのキャッシュサイズの調整が含まれます。

この記事では、MySQLのAlter Tableステートメントを使用して、列の追加/ドロップ、テーブル/列の名前の変更、列データ型の変更など、テーブルを変更することについて説明します。

完全なテーブルスキャンは、MySQLでインデックスを使用するよりも速い場合があります。特定のケースには以下が含まれます。1)データボリュームは小さい。 2)クエリが大量のデータを返すとき。 3)インデックス列が高度に選択的でない場合。 4)複雑なクエリの場合。クエリプランを分析し、インデックスを最適化し、オーバーインデックスを回避し、テーブルを定期的にメンテナンスすることにより、実際のアプリケーションで最良の選択をすることができます。

はい、MySQLはWindows 7にインストールできます。MicrosoftはWindows 7のサポートを停止しましたが、MySQLは引き続き互換性があります。ただし、インストールプロセス中に次のポイントに注意する必要があります。WindowsのMySQLインストーラーをダウンロードしてください。 MySQL(コミュニティまたはエンタープライズ)の適切なバージョンを選択します。インストールプロセス中に適切なインストールディレクトリと文字セットを選択します。ルートユーザーパスワードを設定し、適切に保ちます。テストのためにデータベースに接続します。 Windows 7の互換性とセキュリティの問題に注意してください。サポートされているオペレーティングシステムにアップグレードすることをお勧めします。

クラスター化されたインデックスと非クラスター化されたインデックスの違いは次のとおりです。1。クラスター化されたインデックスは、インデックス構造にデータを保存します。これは、プライマリキーと範囲でクエリするのに適しています。 2.非クラスター化されたインデックスストアは、インデックスキー値とデータの行へのポインターであり、非プリマリーキー列クエリに適しています。

記事では、MySQLワークベンチやPHPMyAdminなどの人気のあるMySQL GUIツールについて説明し、初心者と上級ユーザーの機能と適合性を比較します。[159文字]

記事では、MySQLで大規模なデータセットを処理するための戦略について説明します。これには、パーティション化、シャード、インデックス作成、クエリ最適化などがあります。

この記事では、ドロップテーブルステートメントを使用してMySQLのドロップテーブルについて説明し、予防策とリスクを強調しています。これは、バックアップなしでアクションが不可逆的であることを強調し、回復方法と潜在的な生産環境の危険を詳述しています。
