人間の活動を特定する
人間活動認識は、センサー データ分析を使用して人間の活動を識別する技術です。さまざまなセンサーデータを収集し、機械学習アルゴリズムと組み合わせることで、人間のさまざまな活動を正確に識別できます。このテクノロジーは、健康監視、運動追跡、生活の質の向上などの分野で広く使用されています。
人間のアクティビティ認識には、データ収集、特徴抽出、モデル トレーニングの 3 つのステップが含まれます。まず、センサーがアクティビティ データを収集し、データベースに保存します。次に、データは機械学習アルゴリズムによる分析のために特徴ベクトルに処理されます。最後に、既知の活動のデータを使用して分類器モデルをトレーニングし、未知のデータ内の人間の活動を識別します。
人間の活動認識の動作原理は、通常は教師あり学習手法を使用する機械学習アルゴリズムに基づいています。教師あり学習アルゴリズムは大量のラベル付きデータセットを利用し、各データポイントには、ウォーキング、ランニング、サイクリングなど、それが表すアクティビティを示す対応するラベルが付いています。機械学習アルゴリズムは、このラベル付きデータを使用して、未知のデータ内の人間の活動を識別する分類子モデルを構築します。このデータを学習および分析することで、アルゴリズムは活動の特徴とパターンを特定し、これらの特徴とパターンに基づいて新しいデータポイントを分類することで、人間の活動の識別を実現します。この手法の基本的な考え方は、モデルをトレーニングすることによって人間の活動のパターンを学習して理解し、実際のアプリケーションでさまざまな活動を正確に識別して分類できるようにすることです。
人間の活動を認識する一般的な方法には、センサー データと深層学習アルゴリズムに基づく特定のアルゴリズムが含まれます。センサー データに基づく従来のアルゴリズムは、通常、特徴抽出と分類器の 2 つのモジュールで構成されます。特徴抽出モジュールはセンサー データから特徴ベクトルを抽出し、分類モジュールはこれらの特徴ベクトルを利用して人間の活動を識別します。これらのアルゴリズムの中でも、サポート ベクター マシン (SVM)、K 最近傍アルゴリズム (KNN)、決定木などの分類器がよく使用されます。これらのアルゴリズムには、高速な計算速度と強力なモデル解釈可能性という利点がありますが、複雑な人間の活動認識シナリオでは精度が制限される可能性があります。
ディープラーニングアルゴリズムは、近年人間の活動認識の分野で広く使用されている手法です。ニューラル ネットワーク モデルを使用してセンサー データを処理し、生データから高レベルの特徴表現を自動的に学習できます。深層学習アルゴリズムの利点は、より複雑なシナリオを処理でき、精度が向上することです。一般的な深層学習モデルには、畳み込みニューラル ネットワーク (CNN)、リカレント ニューラル ネットワーク (RNN)、および長期短期記憶ネットワーク (LSTM) が含まれます。これらのモデルにはさまざまな構造と適用範囲があり、特定のアプリケーションのニーズに応じて選択できます。ディープラーニングアルゴリズムが画像認識、音声認識、自然言語処理などの分野で大きな進歩を遂げ、人工知能の開発に革命的な影響をもたらしたことは言及する価値があります。
人間の活動認識は、健康状態の監視、運動の追跡、生活の質の向上など、さまざまなシナリオに適用できます。健康監視の観点では、人間の活動認識を使用して高齢者や慢性疾患患者の活動を監視し、より個別化された医療サービスを提供できます。スポーツ追跡に関しては、人々が自分のスポーツを監視し、より正確なスポーツ データを提供するのに役立ちます。生活の質の向上という点では、人間の活動認識は、人々が自分の日常生活の活動をより深く理解し、生活の質を向上させるための個別の推奨事項を提供するのに役立ちます。
以上が人間の活動を特定するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

以前に書きましたが、今日は、深層学習テクノロジーが複雑な環境におけるビジョンベースの SLAM (同時ローカリゼーションとマッピング) のパフォーマンスをどのように向上させることができるかについて説明します。ここでは、深部特徴抽出と深度マッチング手法を組み合わせることで、低照度条件、動的照明、テクスチャの弱い領域、激しいセックスなどの困難なシナリオでの適応を改善するように設計された多用途のハイブリッド ビジュアル SLAM システムを紹介します。当社のシステムは、拡張単眼、ステレオ、単眼慣性、ステレオ慣性構成を含む複数のモードをサポートしています。さらに、他の研究にインスピレーションを与えるために、ビジュアル SLAM と深層学習手法を組み合わせる方法も分析します。公開データセットと自己サンプリングデータに関する広範な実験を通じて、測位精度と追跡堅牢性の点で SL-SLAM の優位性を実証しました。

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

MetaFAIR はハーバード大学と協力して、大規模な機械学習の実行時に生成されるデータの偏りを最適化するための新しい研究フレームワークを提供しました。大規模な言語モデルのトレーニングには数か月かかることが多く、数百、さらには数千の GPU を使用することが知られています。 LLaMA270B モデルを例にとると、そのトレーニングには合計 1,720,320 GPU 時間が必要です。大規模なモデルのトレーニングには、これらのワークロードの規模と複雑さにより、特有のシステム上の課題が生じます。最近、多くの機関が、SOTA 生成 AI モデルをトレーニングする際のトレーニング プロセスの不安定性を報告しています。これらは通常、損失スパイクの形で現れます。たとえば、Google の PaLM モデルでは、トレーニング プロセス中に最大 20 回の損失スパイクが発生しました。数値的なバイアスがこのトレーニングの不正確さの根本原因です。
