非独立かつ同一分散したデータの扱い方と一般的な手法
非独立かつ同一分布とは、データセット内のサンプルが独立かつ同一分布の条件を満たしていないことを意味します。これは、サンプルが同じ分布から独立して抽出されたものではないことを意味します。この状況は、特に分布が不均衡であるかクラス間相関がある場合、一部の機械学習アルゴリズムのパフォーマンスに悪影響を与える可能性があります。
機械学習とデータ サイエンスでは、通常、データは独立して同一に分散していると想定されますが、実際のデータ セットでは、独立していない同一に分散している状況がよくあります。これは、データ間に相関関係がある可能性があり、同じ確率分布に適合しない可能性があることを意味します。この場合、モデルのパフォーマンスに影響が出る可能性があります。非独立かつ同一の分布の問題に対処するために、次の戦略を採用できます。 1. データの前処理: データのクリーニング、外れ値の除去、欠損値の補充などにより、データの相関関係や分布の偏りを軽減できます。 2. 特徴の選択: ターゲット変数と相関性の高い特徴を選択すると、無関係な特徴がモデルに与える影響を軽減し、モデルのパフォーマンスを向上させることができます。 3. 特徴変換: 対数変換や正規化などのデータを変換することで、データを独立した同一に近づけることができます。
#一般的な対処方法は次のとおりです。非独立かつ同一の分布 :
1. データ リサンプリング
データ リサンプリングは、次のようにして非独立かつ同一の分布を扱う方法です。データセットを微調整して、データサンプル間の相関を低減します。一般的に使用されるリサンプリング方法には、Bootstrap や SMOTE などがあります。ブートストラップは、複数のランダム サンプリングを通じて新しいデータ セットを生成する、置換を伴うサンプリング方法です。 SMOTE は、少数派クラスのサンプルに基づいて新しい合成サンプルを生成することにより、少数派クラスのサンプルを合成してクラス分布のバランスをとる方法です。これらの方法は、サンプルの不均衡と相関の問題に効果的に対処し、機械学習アルゴリズムのパフォーマンスと安定性を向上させることができます。
2. 分布適応法
分布適応法は、モデルパラメータを適応的に調整して、非独立かつ同一のモデルに適応できる手法です。配布されたデータ。この方法では、データの分布に従ってモデル パラメーターを自動的に調整し、モデルのパフォーマンスを向上させることができます。一般的な分布適応方法には、転移学習、ドメイン適応などが含まれます。
3. マルチタスク学習法
マルチタスク学習法とは、複数のタスクを同時に処理できる学習法です。また、モデルのパラメータを共有してモデルのパフォーマンスを向上させることができます。この方法では、さまざまなタスクを 1 つに結合できるため、タスク間の相関関係を利用してモデルのパフォーマンスを向上させることができます。マルチタスク学習方法は、非独立で同一に分散されたデータを処理するためによく使用され、異なるタスクからのデータセットを結合してモデルの汎化能力を向上させることができます。
4. 特徴選択方法
特徴選択方法は、モデルのトレーニングに最も関連性のある特徴を選択できる方法です。最も関連性の高い特徴を選択することにより、非 IID データ内のノイズや無関係な情報が削減され、それによってモデルのパフォーマンスが向上します。特徴選択方法には、フィルタリング方法、パッケージング方法、および埋め込み方法が含まれます。
5. アンサンブル学習法
アンサンブル学習法は、複数のモデルを統合して全体的なパフォーマンスを向上させることができる方法です。異なるモデルを組み合わせることで、モデル間の偏りや分散を減らすことができ、それによってモデルの汎化能力が向上します。統合的な学習方法には、バギング、ブースティング、スタッキングなどが含まれます。
以上が非独立かつ同一分散したデータの扱い方と一般的な手法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











画像の注釈は、ラベルまたは説明情報を画像に関連付けて、画像の内容に深い意味と説明を与えるプロセスです。このプロセスは機械学習にとって重要であり、画像内の個々の要素をより正確に識別するために視覚モデルをトレーニングするのに役立ちます。画像に注釈を追加することで、コンピュータは画像の背後にあるセマンティクスとコンテキストを理解できるため、画像の内容を理解して分析する能力が向上します。画像アノテーションは、コンピュータ ビジョン、自然言語処理、グラフ ビジョン モデルなどの多くの分野をカバーする幅広い用途があり、車両が道路上の障害物を識別するのを支援したり、障害物の検出を支援したりするなど、幅広い用途があります。医用画像認識による病気の診断。この記事では主に、より優れたオープンソースおよび無料の画像注釈ツールをいくつか推奨します。 1.マケセンス

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

平たく言えば、機械学習モデルは、入力データを予測された出力にマッピングする数学関数です。より具体的には、機械学習モデルは、予測出力と真のラベルの間の誤差を最小限に抑えるために、トレーニング データから学習することによってモデル パラメーターを調整する数学関数です。機械学習には、ロジスティック回帰モデル、デシジョン ツリー モデル、サポート ベクター マシン モデルなど、多くのモデルがあります。各モデルには、適用可能なデータ タイプと問題タイプがあります。同時に、異なるモデル間には多くの共通点があったり、モデル進化の隠れた道が存在したりすることがあります。コネクショニストのパーセプトロンを例にとると、パーセプトロンの隠れ層の数を増やすことで、それをディープ ニューラル ネットワークに変換できます。パーセプトロンにカーネル関数を追加すると、SVM に変換できます。これです

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

MetaFAIR はハーバード大学と協力して、大規模な機械学習の実行時に生成されるデータの偏りを最適化するための新しい研究フレームワークを提供しました。大規模な言語モデルのトレーニングには数か月かかることが多く、数百、さらには数千の GPU を使用することが知られています。 LLaMA270B モデルを例にとると、そのトレーニングには合計 1,720,320 GPU 時間が必要です。大規模なモデルのトレーニングには、これらのワークロードの規模と複雑さにより、特有のシステム上の課題が生じます。最近、多くの機関が、SOTA 生成 AI モデルをトレーニングする際のトレーニング プロセスの不安定性を報告しています。これらは通常、損失スパイクの形で現れます。たとえば、Google の PaLM モデルでは、トレーニング プロセス中に最大 20 回の損失スパイクが発生しました。数値的なバイアスがこのトレーニングの不正確さの根本原因です。
