強化学習における価値関数とそのベルマン方程式の重要性
強化学習は機械学習の一分野であり、試行錯誤を通じて特定の環境における最適なアクションを学習することを目的としています。その中でも、価値関数とベルマン方程式は強化学習の重要な概念であり、この分野の基本原理を理解するのに役立ちます。
価値関数は、特定の状態で得られることが期待される長期収益の期待値です。強化学習では、アクションのメリットを評価するために報酬を使用することがよくあります。報酬は即時または遅延することができ、効果は将来のタイムステップで発生します。したがって、値関数を状態値関数とアクション値関数の 2 つのカテゴリに分けることができます。状態値関数は特定の状態でアクションを取ることの価値を評価し、アクション値関数は特定の状態で特定のアクションを取ることの価値を評価します。価値関数を計算して更新することにより、強化学習アルゴリズムは長期的な利益を最大化するための最適な戦略を見つけることができます。
状態値関数は、特定の状態で最適な戦略を採用することで得られる期待収益です。現在の状態で特定の戦略を実行することで期待されるリターンを計算することで、状態価値関数を推定できます。状態値関数を推定する方法としては、モンテカルロ法と時間差学習法がよく使われます。
アクション値関数は、特定の状態でアクションを実行した後に得られる期待されるリターンを指します。行動価値関数の推定には、Q 学習アルゴリズムと SARSA アルゴリズムを使用できます。これらのアルゴリズムは、現在の状態で特定のアクションを実行した場合に期待されるリターンを計算することで推定を行います。
ベルマン方程式は強化学習における重要な概念であり、状態の値関数を再帰的に計算するために使用されます。ベルマン方程式は、状態価値関数のベルマン方程式と行動価値関数のベルマン方程式の 2 種類に分類できます。前者は、後続の状態と即時報酬の価値関数を通じて計算されますが、後者は、行われたアクションが価値に与える影響を考慮する必要があります。これらの方程式は強化学習アルゴリズムで重要な役割を果たし、エージェントが学習して最適な決定を下すのに役立ちます。
状態価値関数のベルマン方程式は、状態の価値関数が次の状態の価値関数と状態の即時報酬を通じて再帰的に計算できることを示しています。数式は次のとおりです。
V(s)=E[R γV(s')]
V(s) は、 state s の価値関数; R は状態 s でアクションをとった後の即時の報酬を表します; γ は将来の収益の重要性を測定するために使用される割引係数を表します; E は期待値を表します; s' は次の状態を表します。
アクション価値関数のベルマン方程式は、ある状態でアクションをとる価値関数が、アクションの次の状態と即時状態の価値関数を通じて再帰的に計算できることを表します。褒美。数式は次のとおりです:
Q(s,a)=E[R γQ(s',a')]
ここで、 Q (s,a) は状態 s でアクション a をとったときの価値関数を表します; R は状態 s でアクション a をとった後の即時報酬を表します; γ は割引係数を表します; E は期待値を表します; s' は次のステップを表しますアクションの実行 a. 状態; a' は、次の状態 s' で実行する最適なアクションを表します。
ベルマン方程式は強化学習において非常に重要な方程式であり、状態価値関数と行動価値関数を推定するための効果的な再帰的計算手法を提供します。ベルマン方程式は、値反復アルゴリズム、ポリシー反復アルゴリズム、Q 学習アルゴリズムなどの値関数ベースの強化学習アルゴリズムを使用して再帰的に計算できます。
つまり、価値関数とベルマン方程式は強化学習における 2 つの重要な概念であり、強化学習を理解するための基礎となります。価値関数を推定し、ベルマン方程式を再帰的に計算することで、特定の環境で最適な行動をとり、長期的な利益を最大化するための最適な戦略を見つけることができます。
以上が強化学習における価値関数とそのベルマン方程式の重要性の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









画像の注釈は、ラベルまたは説明情報を画像に関連付けて、画像の内容に深い意味と説明を与えるプロセスです。このプロセスは機械学習にとって重要であり、画像内の個々の要素をより正確に識別するために視覚モデルをトレーニングするのに役立ちます。画像に注釈を追加することで、コンピュータは画像の背後にあるセマンティクスとコンテキストを理解できるため、画像の内容を理解して分析する能力が向上します。画像アノテーションは、コンピュータ ビジョン、自然言語処理、グラフ ビジョン モデルなどの多くの分野をカバーする幅広い用途があり、車両が道路上の障害物を識別するのを支援したり、障害物の検出を支援したりするなど、幅広い用途があります。医用画像認識による病気の診断。この記事では主に、より優れたオープンソースおよび無料の画像注釈ツールをいくつか推奨します。 1.マケセンス

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

平たく言えば、機械学習モデルは、入力データを予測された出力にマッピングする数学関数です。より具体的には、機械学習モデルは、予測出力と真のラベルの間の誤差を最小限に抑えるために、トレーニング データから学習することによってモデル パラメーターを調整する数学関数です。機械学習には、ロジスティック回帰モデル、デシジョン ツリー モデル、サポート ベクター マシン モデルなど、多くのモデルがあります。各モデルには、適用可能なデータ タイプと問題タイプがあります。同時に、異なるモデル間には多くの共通点があったり、モデル進化の隠れた道が存在したりすることがあります。コネクショニストのパーセプトロンを例にとると、パーセプトロンの隠れ層の数を増やすことで、それをディープ ニューラル ネットワークに変換できます。パーセプトロンにカーネル関数を追加すると、SVM に変換できます。これです

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります
