目次
ステップ 1: データを準備する
ステップ 2: エンティティと関係を定義する
ステップ 3: エンティティ セットを作成する
ステップ 4: 関係を定義する
ステップ 5: 深部特徴合成アルゴリズムを実行する
ステップ 6: モデルを構築する
概要:
ホームページ テクノロジー周辺機器 AI Featuretools を使用して自動特徴量エンジニアリングを実装する

Featuretools を使用して自動特徴量エンジニアリングを実装する

Jan 22, 2024 pm 03:18 PM
特徴エンジニアリング

Featuretools を使用して自動特徴量エンジニアリングを実装する

Featuretools は、自動特徴量エンジニアリング用の Python ライブラリです。特徴エンジニアリング プロセスを簡素化し、機械学習モデルのパフォーマンスを向上させることを目的としています。このライブラリは生データから有用な特徴を自動的に抽出できるため、ユーザーはモデルの精度を向上させながら時間と労力を節約できます。

Featuretools を使用して特徴エンジニアリングを自動化する方法の手順は次のとおりです:

ステップ 1: データを準備する

Featuretools を使用する前に、データ セットを準備する必要があります。データセットは Pandas DataFrame 形式である必要があり、各行が観測値を表し、各列が特徴を表します。分類および回帰問題の場合、データ セットにはターゲット変数が含まれている必要がありますが、クラスタリング問題の場合、データ セットにターゲット変数は必要ありません。したがって、Featuretools を使用する場合は、特徴エンジニアリングと特徴生成を効率的に実行できるように、データセットがこれらの要件を満たしていることを確認してください。

ステップ 2: エンティティと関係を定義する

Featuretools を特徴量エンジニアリングに使用する場合は、最初にエンティティと関係を定義する必要があります。エンティティは、関連する特性のセットを含むデータ セットのサブセットです。たとえば、電子商取引 Web サイトでは、注文、ユーザー、製品、支払いなどを別のエンティティとして扱うことができます。関係とはエンティティ間のつながりであり、たとえば、注文がユーザーに関連付けられたり、ユーザーが複数の製品を購入したりする場合があります。エンティティと関係を明確に定義することで、データ セットの構造をより深く理解できるようになり、特徴の生成とデータ分析が容易になります。

ステップ 3: エンティティ セットを作成する

Featuretools を使用して、エンティティと関係を定義してエンティティ セットを作成できます。エンティティ セットは、複数のエンティティのコレクションです。このステップでは、各エンティティの名前、データセット、インデックス、変数タイプ、タイムスタンプなどを定義する必要があります。たとえば、次のコードを使用して、注文エンティティとユーザー エンティティを含むエンティティ セットを作成できます。

import featuretools as ft

# Create entity set
es=ft.EntitySet(id='ecommerce')

# Define entities
orders=ft.Entity(id='orders',dataframe=orders_df,index='order_id',time_index='order_time')
users=ft.Entity(id='users',dataframe=users_df,index='user_id')

# Add entities to entity set
es=es.entity_from_dataframe(entity_id='orders',dataframe=orders_df,index='order_id',time_index='order_time')
es=es.entity_from_dataframe(entity_id='users',dataframe=users_df,index='user_id')
ログイン後にコピー

ここでは、EntitySet を使用して「」というエンティティを作成します。 ecommerce」エンティティ セットを作成し、エンティティを使用して注文とユーザーの 2 つのエンティティを定義します。注文エンティティの場合、注文 ID をインデックスとして指定し、注文時刻をタイムスタンプとして指定しました。ユーザー エンティティについては、インデックスとしてユーザー ID のみを指定しました。

ステップ 4: 関係を定義する

このステップでは、エンティティ間の関係を定義する必要があります。フィーチャーツールを使用すると、エンティティ間の共有変数、タイムスタンプなどを通じて関係を定義できます。たとえば、電子商取引 Web サイトでは、各注文がユーザーに関連付けられます。注文とユーザーの間の関係は、次のコードを使用して定義できます。

# Define relationships
r_order_user = ft.Relationship(orders['user_id'], users['user_id'])
es = es.add_relationship(r_order_user)
ログイン後にコピー

ここでは、Relationship を使用して注文とユーザーの間の関係を定義し、add_relationship を使用してそれらをエンティティ セットに追加しました。

ステップ 5: 深部特徴合成アルゴリズムを実行する

上記のステップを完了すると、Featuretools の深部特徴合成アルゴリズムを使用して、フィーチャーを自動的に生成します。このアルゴリズムは、集計、変換、組み合わせなどの新しい機能を自動的に作成します。次のコードを使用して、深部特徴合成アルゴリズムを実行できます:

# Run deep feature synthesis algorithm
features, feature_names = ft.dfs(entityset=es, target_entity='orders', max_depth=2)
ログイン後にコピー

ここでは、dfs 関数を使用して深部特徴合成アルゴリズムを実行し、ターゲット エンティティを順序エンティティとして指定し、最大深度を設定します。 2へ。この関数は、新しい機能と機能名のリストを含む DataFrame を返します。

ステップ 6: モデルを構築する

新しい機能を取得したら、それらを使用して機械学習モデルをトレーニングできます。次のコードを使用して、元のデータセットに新しい特徴を追加できます:

# Add new features to original dataset
df=pd.merge(orders_df,features,left_on='order_id',right_on='order_id')
ログイン後にコピー

ここでは、マージ関数を使用して、トレーニングとテストのために元のデータセットに新しい特徴を追加します。その後、新しい機能を使用して機械学習モデルをトレーニングできます。例:

# Split dataset into train and test sets
X_train, X_test, y_train, y_test = train_test_split(df[feature_names], df['target'], test_size=0.2, random_state=42)

# Train machine learning model
model = RandomForestClassifier()
model.fit(X_train, y_train)

# Evaluate model performance
y_pred = model.predict(X_test)
accuracy_score(y_test, y_pred)
ログイン後にコピー

ここでは、ランダム フォレスト分類器を機械学習モデルとして使用し、トレーニング セットを使用してモデルをトレーニングします。次に、テスト セットを使用して、精度を評価指標として使用してモデルのパフォーマンスを評価します。

概要:

Featuretools を使用して特徴エンジニアリングを自動化する手順には、データの準備、エンティティと関係の定義、エンティティ セットの作成、関係の定義が含まれます。 、ディープ特徴合成アルゴリズムとモデル構築を実行します。 Featuretools は生データから有用な特徴を自動的に抽出できるため、ユーザーは時間と労力を大幅に節約し、機械学習モデルのパフォーマンスを向上させることができます。

以上がFeaturetools を使用して自動特徴量エンジニアリングを実装するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

スケール不変特徴量 (SIFT) アルゴリズム スケール不変特徴量 (SIFT) アルゴリズム Jan 22, 2024 pm 05:09 PM

スケール不変特徴変換 (SIFT) アルゴリズムは、画像処理およびコンピューター ビジョンの分野で使用される特徴抽出アルゴリズムです。このアルゴリズムは、コンピュータ ビジョン システムにおけるオブジェクト認識とマッチングのパフォーマンスを向上させるために 1999 年に提案されました。 SIFT アルゴリズムは堅牢かつ正確であり、画像認識、3 次元再構成、ターゲット検出、ビデオ追跡などの分野で広く使用されています。複数のスケール空間内のキーポイントを検出し、キーポイントの周囲の局所特徴記述子を抽出することにより、スケール不変性を実現します。 SIFT アルゴリズムの主なステップには、スケール空間の構築、キー ポイントの検出、キー ポイントの位置決め、方向の割り当て、および特徴記述子の生成が含まれます。これらのステップを通じて、SIFT アルゴリズムは堅牢でユニークな特徴を抽出することができ、それによって効率的な画像処理を実現します。

Featuretools を使用して自動特徴量エンジニアリングを実装する Featuretools を使用して自動特徴量エンジニアリングを実装する Jan 22, 2024 pm 03:18 PM

Featuretools は、自動特徴量エンジニアリング用の Python ライブラリです。特徴エンジニアリング プロセスを簡素化し、機械学習モデルのパフォーマンスを向上させることを目的としています。このライブラリは生データから有用な特徴を自動的に抽出できるため、ユーザーはモデルの精度を向上させながら時間と労力を節約できます。以下に、Featuretools を使用して特徴量エンジニアリングを自動化する手順を示します。 ステップ 1: データを準備する Featuretools を使用する前に、データ セットを準備する必要があります。データセットは PandasDataFrame 形式である必要があり、各行が観測値を表し、各列が特徴を表します。分類問題と回帰問題の場合、データ セットにはターゲット変数が含まれている必要がありますが、クラスタリング問題の場合、データ セットにはターゲット変数が含まれている必要はありません。

再帰的特徴除去法のRFEアルゴリズム 再帰的特徴除去法のRFEアルゴリズム Jan 22, 2024 pm 03:21 PM

再帰的特徴削除 (RFE) は、データ セットの次元を効果的に削減し、モデルの精度と効率を向上させることができる、一般的に使用される特徴選択手法です。機械学習では、特徴の選択は重要なステップであり、これにより無関係または冗長な特徴を削除し、それによってモデルの汎化能力と解釈可能性を向上させることができます。 RFE アルゴリズムは、段階的な反復を通じてモデルをトレーニングして最も重要度の低い特徴を削除し、指定された特徴数に達するか特定のパフォーマンス メトリックに達するまでモデルを再度トレーニングすることによって機能します。この自動化された特徴選択方法により、モデルのパフォーマンスが向上するだけでなく、トレーニング時間とコンピューティング リソースの消費も削減できます。全体として、RFE は特徴選択プロセスに役立つ強力なツールであり、モデルをトレーニングするための反復手法です。

AI技術を文書比較に応用 AI技術を文書比較に応用 Jan 22, 2024 pm 09:24 PM

AI による文書比較の利点は、文書間の変更や差異を自動的に検出して迅速に比較できるため、時間と労力を節約し、人的ミスのリスクを軽減できることです。さらに、AI は大量のテキスト データを処理し、処理の効率と精度を向上させることができ、異なるバージョンのドキュメントを比較して、ユーザーが最新バージョンや変更されたコンテンツをすばやく見つけることができるようにします。 AI ドキュメントの比較には、通常、テキストの前処理とテキストの比較という 2 つの主要なステップが含まれます。まず、テキストをコンピュータで処理可能な形式に変換するために前処理する必要があります。次に、テキスト間の類似性を比較することによって、テキスト間の差異が判断されます。以下では、2 つのテキスト ファイルの比較を例として、このプロセスを詳しく紹介します。テキストの前処理 まず、テキストを前処理する必要があります。これにはポイントも含まれます

畳み込みニューラル ネットワークを使用した画像スタイル転送のコード例 畳み込みニューラル ネットワークを使用した画像スタイル転送のコード例 Jan 22, 2024 pm 01:30 PM

畳み込みニューラルネットワークに基づく画像スタイル転送は、画像の内容とスタイルを組み合わせて新しい画像を生成する技術です。畳み込みニューラル ネットワーク (CNN) モデルを利用して、画像をスタイル特徴ベクトルに変換します。この記事では、このテクノロジーを次の 3 つの側面から説明します。 1. 技術原理 畳み込みニューラル ネットワークに基づく画像スタイル転送の実装は、コンテンツ表現とスタイル表現という 2 つの重要な概念に依存しています。コンテンツ表現は、画像内のオブジェクトとオブジェクトの抽象表現を指しますが、スタイル表現は、画像内のテクスチャと色の抽象表現を指します。畳み込みニューラル ネットワークでは、コンテンツ表現とスタイル表現を組み合わせて新しい画像を生成し、元の画像のコンテンツを保持し、新しい画像のスタイルを保持します。これを実現するには、と呼ばれるメソッドを使用できます。

浅い特徴抽出器の原理、機能、応用 浅い特徴抽出器の原理、機能、応用 Jan 22, 2024 pm 05:12 PM

浅い特徴抽出器は、深層学習ニューラル ネットワークのより浅い層に位置する特徴抽出器です。その主な機能は、分類や回帰などのタスクを実行するために、後続のモデル レイヤーのために入力データを高次元の特徴表現に変換することです。浅い特徴抽出器は、畳み込みニューラル ネットワーク (CNN) の畳み込み演算とプーリング演算を利用して特徴抽出を実現します。畳み込み演算を通じて、浅い特徴抽出器は入力データの局所的な特徴をキャプチャでき、一方、プーリング操作は特徴の次元を削減し、重要な特徴情報を保持できます。このようにして、浅い特徴抽出プログラムは生データをより意味のある特徴表現に変換し、後続のタスクのパフォーマンスを向上させることができます。畳み込み演算は、畳み込みニューラル ネットワーク (CNN) の中核となる演算の 1 つです。一連の畳み込みカーネルを使用して、入力データに対して畳み込み演算を実行します。

特徴抽出におけるボルツマン マシンの応用ガイド 特徴抽出におけるボルツマン マシンの応用ガイド Jan 22, 2024 pm 10:06 PM

ボルツマン マシン (BM) は、ニューロン間のランダムな接続関係を持つ複数のニューロンで構成される確率ベースのニューラル ネットワークです。 BM の主なタスクは、データの確率分布を学習して特徴を抽出することです。この記事では、BM を特徴抽出に適用する方法と実際の適用例をいくつか紹介します。 1. BM の基本構造 BM は可視層と隠れ層から構成されます。可視層は生データを受け取り、隠れ層は学習を通じて高度な特徴表現を取得します。 BM では、各ニューロンには 0 と 1 の 2 つの状態があります。 BM の学習プロセスは、トレーニング段階とテスト段階に分けることができます。トレーニング フェーズでは、BM はデータの確率分布を学習し、テスト フェーズで新しいデータ サンプルを生成します。

機能はモデル タイプの選択にどのような影響を与えますか? 機能はモデル タイプの選択にどのような影響を与えますか? Jan 24, 2024 am 11:03 AM

特徴は機械学習において重要な役割を果たします。モデルを構築するときは、トレーニング用の特徴を慎重に選択する必要があります。機能の選択は、モデルのパフォーマンスとタイプに直接影響します。この記事では、機能がモデル タイプにどのような影響を与えるかを説明します。 1. 特徴量の数 特徴量の数は、モデルの種類に影響を与える重要な要素の 1 つです。特徴の数が少ない場合は、通常、線形回帰、決定木などの従来の機械学習アルゴリズムが使用されます。これらのアルゴリズムは少数の特徴の処理に適しており、計算速度は比較的高速です。ただし、特徴の数が非常に多くなると、高次元データの処理が困難になるため、通常、これらのアルゴリズムのパフォーマンスが低下します。したがって、この場合、サポート ベクター マシン、ニューラル ネットワークなどのより高度なアルゴリズムを使用する必要があります。これらのアルゴリズムは高次元を処理できます。

See all articles