損失関数と確率関数の相関関係
損失関数と尤度関数は、機械学習における 2 つの重要な概念です。損失関数はモデルの予測が実際の結果とどの程度異なるかを評価するために使用され、尤度関数はパラメーター推定の尤度を記述するために使用されます。損失関数は対数尤度関数の負の値とみなすことができるため、これらは密接に関連しています。これは、損失関数を最小化することは尤度関数を最大化することと同等であることを意味し、それによってパラメータ推定の精度が向上します。損失関数を最適化することで、モデルのパラメーターを調整してデータをより適切に適合させ、予測の精度を向上させることができます。したがって、機械学習では、損失関数と尤度関数の理解と応用が非常に重要です。
まず、損失関数の概念を理解しましょう。損失関数は、モデルの予測結果 ŷ と真の結果 y の差を測定するスカラー関数です。機械学習で一般的に使用される損失関数には、二乗損失関数とクロスエントロピー損失関数が含まれます。二乗損失関数は次のように定義できます。
L(ŷ,y)=(ŷ-y)²
二乗損失関数を使用 モデルの予測結果と実際の結果との二乗誤差を測定し、誤差が小さいほどモデルの性能が優れていることを示します。
以下では、尤度関数の概念をさらに詳しく説明します。尤度関数はパラメータ θ に関する関数で、パラメータ θ が与えられた場合の観測データの可能性を表します。統計学では、パラメーター θ を推定するために最尤推定 (MLE) を使用することがよくあります。最尤推定の考え方は、尤度関数を最大化するパラメータ θ を選択することです。尤度関数を最大化することにより、与えられたデータから最も可能性の高いパラメータ値を見つけて、パラメータを推定することができます。
二項分布を例に挙げ、n 回の試行で k 回の成功を観察する確率を p と仮定すると、尤度関数は次のように表すことができます。
L(p)=(n 選択 k)*p^k*(1-p)^(n-k)
このうち、(n 選択 k) は、 from n k 回の試行で成功した組み合わせの数を選択します。最尤推定の目的は、この p 値の下で観測データの確率を最大化する最適な p 値を見つけることです。
次に、損失関数と尤度関数の関係を見てみましょう。最尤推定では、観測データの尤度関数がこのパラメータの下で最大化されるようなパラメータ θ のセットを見つける必要があります。したがって、尤度関数は最適化の対象であり、損失関数は実際の計算過程で最適化を行うために使用される関数と考えることができます。
次に、損失関数と尤度関数の関係を示す簡単な例を見てみましょう。データのセット {(x1,y1),(x2,y2),…,(xn,yn)} があるとします。ここで、xi は入力特徴、yi は出力ラベルです。これらのデータを適合させるために線形モデルを使用したいと考えています。モデルの形式は次のとおりです:
ŷ=θ0 θ1x1 θ2x2 … θmxm
ここで、θ0、θ1、θ2、…、θmはモデルパラメータです。これらのパラメータは、最小二乗法または最尤推定を使用して解決できます。
最小二乗法では、二乗損失関数を使用して、モデルの予測と実際の結果の差を測定します。
L(θ)=(ŷ-y)²
私たちの目標は、すべてのデータの二乗損失の合計を最小化するパラメータ θ のセットを見つけることです。勾配降下法などの方法で解くことができます。
# 最尤推定では、尤度関数を使用して、パラメータ θ の下で観測されたデータの可能性を記述することができます。つまり、
L(θ)=Πi=1^n P(yi|xi;θ)
ここで、P(yi|xi;θ) はパラメータ θ の下で与えられた入力です。特徴 xi の条件、ラベル yi の確率密度関数を出力します。私たちの目標は、尤度関数を最大化するパラメータ θ のセットを見つけることです。これは勾配上昇法などの方法を使用して解決できます。
これで、損失関数と尤度関数の関係が非常に密接であることがわかります。最小二乗法では、二乗損失関数は対数尤度関数の負の関数とみなすことができます。最尤推定では、尤度関数を最適化の目的とみなすことができ、損失関数は実際の計算プロセスで最適化に使用される関数です。
つまり、損失関数と尤度関数は、機械学習と統計において非常に重要な概念です。それらの間の関係は密接であり、損失関数は対数尤度関数の負の関数と見なすことができます。実際のアプリケーションでは、適切な損失関数と尤度関数を選択して、特定の問題に従ってモデルを最適化できます。
以上が損失関数と確率関数の相関関係の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









画像の注釈は、ラベルまたは説明情報を画像に関連付けて、画像の内容に深い意味と説明を与えるプロセスです。このプロセスは機械学習にとって重要であり、画像内の個々の要素をより正確に識別するために視覚モデルをトレーニングするのに役立ちます。画像に注釈を追加することで、コンピュータは画像の背後にあるセマンティクスとコンテキストを理解できるため、画像の内容を理解して分析する能力が向上します。画像アノテーションは、コンピュータ ビジョン、自然言語処理、グラフ ビジョン モデルなどの多くの分野をカバーする幅広い用途があり、車両が道路上の障害物を識別するのを支援したり、障害物の検出を支援したりするなど、幅広い用途があります。医用画像認識による病気の診断。この記事では主に、より優れたオープンソースおよび無料の画像注釈ツールをいくつか推奨します。 1.マケセンス

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

平たく言えば、機械学習モデルは、入力データを予測された出力にマッピングする数学関数です。より具体的には、機械学習モデルは、予測出力と真のラベルの間の誤差を最小限に抑えるために、トレーニング データから学習することによってモデル パラメーターを調整する数学関数です。機械学習には、ロジスティック回帰モデル、デシジョン ツリー モデル、サポート ベクター マシン モデルなど、多くのモデルがあります。各モデルには、適用可能なデータ タイプと問題タイプがあります。同時に、異なるモデル間には多くの共通点があったり、モデル進化の隠れた道が存在したりすることがあります。コネクショニストのパーセプトロンを例にとると、パーセプトロンの隠れ層の数を増やすことで、それをディープ ニューラル ネットワークに変換できます。パーセプトロンにカーネル関数を追加すると、SVM に変換できます。これです

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。
