目次
1. ポーリング
パディング操作には、通常、ゼロ パディングと境界パディングの 2 つの方法が含まれます。
ホームページ テクノロジー周辺機器 AI 畳み込みニューラル ネットワークへのポーリングとフィルの応用

畳み込みニューラル ネットワークへのポーリングとフィルの応用

Jan 22, 2024 pm 04:24 PM
ディープラーニング 人工ニューラルネットワーク

畳み込みニューラル ネットワークへのポーリングとフィルの応用

畳み込みニューラル ネットワーク (CNN) は、画像認識、自然言語処理、音声認識などの分野で広く使用されている深層学習ニューラル ネットワークです。畳み込み層は CNN で最も重要な層であり、画像の特徴は畳み込み演算を通じて効果的に抽出できます。畳み込み層では、ポーリングとパディングが畳み込み層のパフォーマンスと安定性を向上させるためによく使用される手法です。ポーリング (プーリング) 操作を通じて、重要な特徴情報を保持しながら、特徴マップのサイズを削減し、モデルの複雑さを軽減できます。パディング操作により、入力画像のエッジの周囲に余分なピクセルを追加できるため、出力特徴マップのサイズが入力と同じになり、情報の損失が回避されます。これらのテクノロジーのアプリケーションについては、さらに詳しく説明します。

1. ポーリング

ポーリングは、CNN で一般的に使用される操作の 1 つです。計算を高速化するために重要な特徴を維持しながらグラフ サイズを変更します。通常、畳み込み演算の後に実行され、特徴マップの空間次元を削減し、モデルの計算量とパラメータの数を削減できます。一般的なポーリング操作には、最大プーリングと平均プーリングが含まれます。

最大プーリングは、各プーリング領域内で最大の特徴量を選択することによってプーリング結果を取得する一般的な操作です。通常、最大プーリングでは 2x2 のプーリング領域と 2 のストライドが使用されます。この操作により、特徴マップのサイズを縮小し、モデルの計算効率と汎化能力を向上させながら、特徴マップ内の最も重要な特徴を保持できます。

平均プーリングは、各プーリングエリアの特徴量の平均値を計算することで、各プーリングエリアのプーリング結果を求める共通のポーリング操作です。平均プーリングには、最大プーリングに比べていくつかの利点があります。まず、特徴マップ内のノイズを平滑化し、最終的な特徴表現に対するノイズの影響を軽減できます。第 2 に、平均プーリングによって特徴マップのサイズも削減できるため、コンピューティングとストレージのコストが削減されます。ただし、平均プーリングにはいくつかの欠点もあります。平均プーリングでは領域全体の特徴値が平均化され、特徴の微妙な変化を正確に捕捉できない可能性があるため、場合によっては重要な特徴情報が失われる可能性があります。したがって、畳み込みゴッドを設計するときに、その周りに余分なピクセルのリングを追加し、それによって特徴マップのサイズを増加させます。充填操作は通常、畳み込み操作の前に実行され、特徴マップのエッジ情報の損失の問題を解決し、畳み込み層の出力サイズを制御することもできます。

パディング操作には、通常、ゼロ パディングと境界パディングの 2 つの方法が含まれます。

ゼロ パディングは、入力特徴マップの周囲にゼロ値を持つピクセルの円を追加する一般的なパディング方法です。ゼロ パディングは、特徴マップ内のエッジ情報を保存でき、畳み込み層の出力サイズも制御できます。畳み込み演算では、通常、特徴マップのサイズが畳み込みカーネルのサイズと同じになるようにゼロ パディングが使用され、それによって畳み込み演算がより便利になります。

境界充填は、もう 1 つの一般的な充填方法で、入力特徴マップの周囲に境界値を持つピクセルの円を追加します。境界充填では、特徴マップ内のエッジ情報を保存でき、畳み込み層の出力サイズも制御できます。一部の特殊なアプリケーション シナリオでは、ゼロ パディングよりも境界パディングの方が適している場合があります。

一般に、ポーリングとフィルは CNN でよく使用される 2 つの手法です。これらは、CNN がより正確で有用な特徴を抽出し、モデルの精度と汎化能力を向上させるのに役立ちます。同時に、最適な結果を達成するには、実際のアプリケーション条件に応じてこれらのテクノロジーを選択し、調整する必要もあります。

以上が畳み込みニューラル ネットワークへのポーリングとフィルの応用の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

ORB-SLAM3を超えて! SL-SLAM: 低照度、重度のジッター、弱いテクスチャのシーンはすべて処理されます。 ORB-SLAM3を超えて! SL-SLAM: 低照度、重度のジッター、弱いテクスチャのシーンはすべて処理されます。 May 30, 2024 am 09:35 AM

以前に書きましたが、今日は、深層学習テクノロジーが複雑な環境におけるビジョンベースの SLAM (同時ローカリゼーションとマッピング) のパフォーマンスをどのように向上させることができるかについて説明します。ここでは、深部特徴抽出と深度マッチング手法を組み合わせることで、低照度条件、動的照明、テクスチャの弱い領域、激しいセックスなどの困難なシナリオでの適応を改善するように設計された多用途のハイブリッド ビジュアル SLAM システムを紹介します。当社のシステムは、拡張単眼、ステレオ、単眼慣性、ステレオ慣性構成を含む複数のモードをサポートしています。さらに、他の研究にインスピレーションを与えるために、ビジュアル SLAM と深層学習手法を組み合わせる方法も分析します。公開データセットと自己サンプリングデータに関する広範な実験を通じて、測位精度と追跡堅牢性の点で SL-SLAM の優位性を実証しました。

1 つの記事で理解: AI、機械学習、ディープラーニングのつながりと違い 1 つの記事で理解: AI、機械学習、ディープラーニングのつながりと違い Mar 02, 2024 am 11:19 AM

今日の急速な技術変化の波の中で、人工知能 (AI)、機械学習 (ML)、および深層学習 (DL) は輝かしい星のようなもので、情報技術の新しい波をリードしています。これら 3 つの単語は、さまざまな最先端の議論や実践で頻繁に登場しますが、この分野に慣れていない多くの探検家にとって、その具体的な意味や内部のつながりはまだ謎に包まれているかもしれません。そこで、まずはこの写真を見てみましょう。ディープラーニング、機械学習、人工知能の間には密接な相関関係があり、進歩的な関係があることがわかります。ディープラーニングは機械学習の特定の分野であり、機械学習

超強い!深層学習アルゴリズムのトップ 10! 超強い!深層学習アルゴリズムのトップ 10! Mar 15, 2024 pm 03:46 PM

2006 年にディープ ラーニングの概念が提案されてから、ほぼ 20 年が経過しました。ディープ ラーニングは、人工知能分野における革命として、多くの影響力のあるアルゴリズムを生み出してきました。では、ディープラーニングのトップ 10 アルゴリズムは何だと思いますか?私の考えでは、ディープ ラーニングのトップ アルゴリズムは次のとおりで、いずれもイノベーション、アプリケーションの価値、影響力の点で重要な位置を占めています。 1. ディープ ニューラル ネットワーク (DNN) の背景: ディープ ニューラル ネットワーク (DNN) は、多層パーセプトロンとも呼ばれ、最も一般的なディープ ラーニング アルゴリズムです。最初に発明されたときは、コンピューティング能力のボトルネックのため疑問視されていました。最近まで長年にわたる計算能力、データの爆発的な増加によって画期的な進歩がもたらされました。 DNN は、複数の隠れ層を含むニューラル ネットワーク モデルです。このモデルでは、各層が入力を次の層に渡し、

テキスト分類に双方向 LSTM モデルを使用するケーススタディ テキスト分類に双方向 LSTM モデルを使用するケーススタディ Jan 24, 2024 am 10:36 AM

双方向 LSTM モデルは、テキスト分類に使用されるニューラル ネットワークです。以下は、テキスト分類タスクに双方向 LSTM を使用する方法を示す簡単な例です。まず、必要なライブラリとモジュールをインポートする必要があります: importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Em

AlphaFold 3 が発売され、タンパク質とすべての生体分子の相互作用と構造をこれまでよりもはるかに高い精度で包括的に予測します。 AlphaFold 3 が発売され、タンパク質とすべての生体分子の相互作用と構造をこれまでよりもはるかに高い精度で包括的に予測します。 Jul 16, 2024 am 12:08 AM

エディター | Radish Skin 2021 年の強力な AlphaFold2 のリリース以来、科学者はタンパク質構造予測モデルを使用して、細胞内のさまざまなタンパク質構造をマッピングし、薬剤を発見し、既知のあらゆるタンパク質相互作用の「宇宙地図」を描いてきました。ちょうど今、Google DeepMind が AlphaFold3 モデルをリリースしました。このモデルは、タンパク質、核酸、小分子、イオン、修飾残基を含む複合体の結合構造予測を実行できます。 AlphaFold3 の精度は、これまでの多くの専用ツール (タンパク質-リガンド相互作用、タンパク質-核酸相互作用、抗体-抗原予測) と比較して大幅に向上しました。これは、単一の統合された深層学習フレームワーク内で、次のことを達成できることを示しています。

CNN と Transformer のハイブリッド モデルを使用してパフォーマンスを向上させる方法 CNN と Transformer のハイブリッド モデルを使用してパフォーマンスを向上させる方法 Jan 24, 2024 am 10:33 AM

畳み込みニューラル ネットワーク (CNN) と Transformer は、さまざまなタスクで優れたパフォーマンスを示した 2 つの異なる深層学習モデルです。 CNN は主に、画像分類、ターゲット検出、画像セグメンテーションなどのコンピューター ビジョン タスクに使用されます。畳み込み演算を通じて画像上の局所的な特徴を抽出し、プーリング演算を通じて特徴の次元削減と空間的不変性を実行します。対照的に、Transformer は主に、機械翻訳、テキスト分類、音声認識などの自然言語処理 (NLP) タスクに使用されます。セルフアテンション メカニズムを使用してシーケンス内の依存関係をモデル化し、従来のリカレント ニューラル ネットワークにおける逐次計算を回避します。これら 2 つのモデルは異なるタスクに使用されますが、シーケンス モデリングでは類似点があるため、

ポートレートカットアウト推論のための TensorFlow 深層学習フレームワークモデル推論パイプライン ポートレートカットアウト推論のための TensorFlow 深層学習フレームワークモデル推論パイプライン Mar 26, 2024 pm 01:00 PM

概要 ModelScope ユーザーがプラットフォームによって提供されるさまざまなモデルを迅速かつ便利に使用できるようにするために、ModelScope 公式モデルの実装と、これらのモデルを推論に使用するために必要なツールを含む、完全に機能する Python ライブラリのセットが提供されます。データの前処理、後処理、効果評価などの機能に関わるコードを提供するとともに、シンプルで使いやすいAPIと豊富な使用例を提供します。このライブラリを呼び出すことで、ユーザーはわずか数行のコードを記述するだけでモデルの推論、トレーニング、評価などのタスクを完了でき、また、これを基に二次開発を迅速に実行して独自の革新的なアイデアを実現することもできます。現在ライブラリによって提供されているアルゴリズム モデルは次のとおりです。

畳み込みニューラル ネットワークを使用した画像のノイズ除去 畳み込みニューラル ネットワークを使用した画像のノイズ除去 Jan 23, 2024 pm 11:48 PM

畳み込みニューラル ネットワークは、画像のノイズ除去タスクで優れたパフォーマンスを発揮します。学習したフィルターを利用してノイズを除去し、元の画像を復元します。この記事では、畳み込みニューラル ネットワークに基づく画像ノイズ除去方法を詳しく紹介します。 1. 畳み込みニューラル ネットワークの概要 畳み込みニューラル ネットワークは、複数の畳み込み層、プーリング層、全結合層の組み合わせを使用して画像の特徴を学習および分類する深層学習アルゴリズムです。畳み込み層では、畳み込み演算を通じて画像の局所的な特徴が抽出され、それによって画像内の空間相関が捕捉されます。プーリング層は、特徴の次元を削減することで計算量を削減し、主要な特徴を保持します。完全に接続された層は、学習した特徴とラベルをマッピングして画像分類やその他のタスクを実装する役割を果たします。このネットワーク構造の設計により、畳み込みニューラル ネットワークは画像処理と認識に役立ちます。

See all articles