ホームページ テクノロジー周辺機器 AI モデルフリーのメタ学習アルゴリズム - MAML メタ学習アルゴリズム

モデルフリーのメタ学習アルゴリズム - MAML メタ学習アルゴリズム

Jan 22, 2024 pm 04:42 PM
機械学習 ディープラーニング

モデルフリーのメタ学習アルゴリズム - MAML メタ学習アルゴリズム

メタ学習とは、新しいタスクに迅速に適応するために、複数のタスクから共通の特徴を抽出することによって学習方法を探索するプロセスを指します。関連するモデル非依存メタ学習 (MAML) は、事前知識がなくてもマルチタスクのメタ学習を実行できるアルゴリズムです。 MAML は、複数の関連タスクを繰り返し最適化することでモデルの初期化パラメーターを学習し、モデルが新しいタスクに迅速に適応できるようにします。 MAML の中心的な考え方は、勾配降下法を通じてモデル パラメーターを調整し、新しいタスクの損失を最小限に抑えることです。この方法では、モデルは少数のサンプルで迅速に学習でき、優れた汎化能力を備えています。 MAML は、画像分類、音声認識、ロボット制御などのさまざまな機械学習タスクで広く使用され、目覚ましい成果を上げています。 MAML などのメタ学習アルゴリズムを通じて、

MAML の基本的な考え方は、大規模なタスク セットに対してメタ学習を実行してモデルの初期化パラメータを取得することです。モデルは新しいタスクで使用でき、タスクに迅速に収束します。具体的には、MAML のモデルは、勾配降下法アルゴリズムを介して更新できるニューラル ネットワークです。更新プロセスは 2 つのステップに分けることができます: まず、大規模なタスク セットに対して勾配降下法を実行して各タスクの更新パラメーターを取得し、次に、これらの更新パラメーターの加重平均によってモデルの初期化パラメーターを取得します。このようにして、モデルは、新しいタスクに対する少数の勾配降下ステップを通じて新しいタスクの特性に迅速に適応でき、それによって迅速な収束が達成されます。

まず、各タスクのトレーニング セットで勾配降下法アルゴリズムを使用してモデルのパラメーターを更新し、タスクに最適なパラメーターを取得します。一定のステップ数の勾配降下のみを実行し、完全なトレーニングを実行したわけではないことに注意してください。これは、モデルを新しいタスクにできるだけ早く適応させることが目標であるため、少量のトレーニングのみが必要となるためです。

新しいタスクの場合、最初のステップで取得したパラメータを初期パラメータとして使用し、そのトレーニング セットに対して勾配降下法を実行して、最適なパラメータを取得できます。このようにして、新しいタスクの特性に迅速に適応し、モデルのパフォーマンスを向上させることができます。

このメソッドを通じて、共通の初期パラメータを取得できるため、モデルが新しいタスクに迅速に適応できるようになります。さらに、MAML は勾配更新を通じて最適化して、モデルのパフォーマンスをさらに向上させることもできます。

以下は、画像分類タスクのメタ学習に MAML を使用するアプリケーション例です。このタスクでは、少数のサンプルから迅速に学習して分類でき、新しいタスクにも迅速に適応できるモデルをトレーニングする必要があります。

この例では、ミニ ImageNet データセットをトレーニングとテストに使用できます。データセットには 600 のカテゴリの画像が含まれており、各カテゴリには 100 のトレーニング画像、20 の検証画像、20 のテスト画像が含まれています。この例では、各カテゴリの 100 枚の学習画像を 1 つのタスクとみなすことができ、各タスクで少量の学習量でモデルを学習し、新しいタスクにすぐに適応できるようにモデルを設計する必要があります。

以下は、PyTorch を使用して実装された MAML アルゴリズムのコード例です:

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader

class MAML(nn.Module):
    def __init__(self, input_size, hidden_size, output_size, num_layers):
        super(MAML, self).__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x, h):
        out, h = self.lstm(x, h)
        out = self.fc(out[:,-1,:])
        return out, h

def train(model, optimizer, train_data, num_updates=5):
    for i, task in enumerate(train_data):
        x, y = task
        x = x.unsqueeze(0)
        y = y.unsqueeze(0)
        h = None
        for j in range(num_updates):
            optimizer.zero_grad()
            outputs, h = model(x, h)
            loss = nn.CrossEntropyLoss()(outputs, y)
            loss.backward()
            optimizer.step()
        if i % 10 == 0:
            print("Training task {}: loss = {}".format(i, loss.item()))

def test(model, test_data):
    num_correct = 0
    num_total = 0
    for task in test_data:
        x, y = task
        x = x.unsqueeze(0)
        y = y.unsqueeze(0)
        h = None
        outputs, h = model(x, h)
        _, predicted = torch.max(outputs.data, 1)
        num_correct += (predicted == y).sum().item()
        num_total += y.size(1)
    acc = num_correct / num_total
    print("Test accuracy: {}".format(acc))

# Load the mini-ImageNet dataset
train_data = DataLoader(...)
test_data = DataLoader(...)

input_size = ...
hidden_size = ...
output_size = ...
num_layers = ...

# Initialize the MAML model
model = MAML(input_size, hidden_size, output_size, num_layers)

# Define the optimizer
optimizer = optim.Adam(model.parameters(), lr=0.001)

# Train the MAML model
for epoch in range(10):
    train(model, optimizer, train_data)
    test(model, test_data)
ログイン後にコピー

このコードでは、最初に LSTM 層で構成される MAML モデルを定義します。そして完全に接続された層。トレーニング プロセスでは、まず各タスクのデータ セットをサンプルとして扱い、次に複数の勾配降下法を通じてモデルのパラメーターを更新します。テストプロセス中に、テストデータセットを予測用のモデルに直接フィードし、精度を計算します。

この例は、画像分類タスクにおける MAML アルゴリズムの適用を示しています。トレーニング セットに対して少量のトレーニングを実行することで、共通の初期化パラメーターが取得されるため、モデルは迅速に新しいタスクに適応します。同時に、勾配更新を通じてアルゴリズムを最適化し、モデルのパフォーマンスを向上させることもできます。

以上がモデルフリーのメタ学習アルゴリズム - MAML メタ学習アルゴリズムの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

この記事では、SHAP: 機械学習のモデルの説明について説明します。 この記事では、SHAP: 機械学習のモデルの説明について説明します。 Jun 01, 2024 am 10:58 AM

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

学習曲線を通じて過学習と過小学習を特定する 学習曲線を通じて過学習と過小学習を特定する Apr 29, 2024 pm 06:50 PM

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

ORB-SLAM3を超えて! SL-SLAM: 低照度、重度のジッター、弱いテクスチャのシーンはすべて処理されます。 ORB-SLAM3を超えて! SL-SLAM: 低照度、重度のジッター、弱いテクスチャのシーンはすべて処理されます。 May 30, 2024 am 09:35 AM

以前に書きましたが、今日は、深層学習テクノロジーが複雑な環境におけるビジョンベースの SLAM (同時ローカリゼーションとマッピング) のパフォーマンスをどのように向上させることができるかについて説明します。ここでは、深部特徴抽出と深度マッチング手法を組み合わせることで、低照度条件、動的照明、テクスチャの弱い領域、激しいセックスなどの困難なシナリオでの適応を改善するように設計された多用途のハイブリッド ビジュアル SLAM システムを紹介します。当社のシステムは、拡張単眼、ステレオ、単眼慣性、ステレオ慣性構成を含む複数のモードをサポートしています。さらに、他の研究にインスピレーションを与えるために、ビジュアル SLAM と深層学習手法を組み合わせる方法も分析します。公開データセットと自己サンプリングデータに関する広範な実験を通じて、測位精度と追跡堅牢性の点で SL-SLAM の優位性を実証しました。

宇宙探査と人類居住工学における人工知能の進化 宇宙探査と人類居住工学における人工知能の進化 Apr 29, 2024 pm 03:25 PM

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 Jun 03, 2024 pm 01:25 PM

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

あなたが知らない機械学習の 5 つの流派 あなたが知らない機械学習の 5 つの流派 Jun 05, 2024 pm 08:51 PM

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

フラッシュ アテンションは安定していますか?メタとハーバードは、モデルの重みの偏差が桁違いに変動していることを発見しました フラッシュ アテンションは安定していますか?メタとハーバードは、モデルの重みの偏差が桁違いに変動していることを発見しました May 30, 2024 pm 01:24 PM

MetaFAIR はハーバード大学と協力して、大規模な機械学習の実行時に生成されるデータの偏りを最適化するための新しい研究フレームワークを提供しました。大規模な言語モデルのトレーニングには数か月かかることが多く、数百、さらには数千の GPU を使用することが知られています。 LLaMA270B モデルを例にとると、そのトレーニングには合計 1,720,320 GPU 時間が必要です。大規模なモデルのトレーニングには、これらのワークロードの規模と複雑さにより、特有のシステム上の課題が生じます。最近、多くの機関が、SOTA 生成 AI モデルをトレーニングする際のトレーニング プロセスの不安定性を報告しています。これらは通常、損失スパイクの形で現れます。たとえば、Google の PaLM モデルでは、トレーニング プロセス中に最大 20 回の損失スパイクが発生しました。数値的なバイアスがこのトレーニングの不正確さの根本原因です。

説明可能な AI: 複雑な AI/ML モデルの説明 説明可能な AI: 複雑な AI/ML モデルの説明 Jun 03, 2024 pm 10:08 PM

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります

See all articles