目次
rmsprop オプティマイザーは過学習を防ぐことができますか?
rmsprop オプティマイザーの使用
ホームページ テクノロジー周辺機器 AI RMSprop アルゴリズムの改善

RMSprop アルゴリズムの改善

Jan 22, 2024 pm 05:18 PM
ディープラーニング 人工ニューラルネットワーク

RMSprop アルゴリズムの改善

RMSprop は、ニューラル ネットワークの重みを更新するために広く使用されているオプティマイザーです。これは、2012 年に Geoffrey Hinton らによって提案され、Adam オプティマイザーの前身です。 RMSprop オプティマイザの登場は主に、勾配の消失や勾配の爆発など、SGD 勾配降下法アルゴリズムで発生するいくつかの問題を解決することを目的としています。 RMSprop オプティマイザーを使用すると、学習率を効果的に調整し、重みを適応的に更新できるため、深層学習モデルのトレーニング効果が向上します。

RMSprop オプティマイザの中心となるアイデアは、異なるタイム ステップでの勾配が重みの更新に異なる影響を与えるように、勾配の加重平均を実行することです。具体的には、RMSprop は各パラメーターの二乗勾配の指数加重平均を計算し、それを平均勾配の平方根で割ります。この平方根を分母として各パラメータの履歴勾配を正規化し、各パラメータの更新量を滑らかにする。さらに、RMSprop は、トレーニング プロセス中に学習率が徐々に低下するように学習率を調整して、モデルの収束速度と汎化能力を向上させることもできます。このように、RMSprop は勾配の変化を効果的に処理し、モデルがさまざまなデータ分布や最適化目標に適応できるように支援します。

具体的には、RMSprop オプティマイザの更新式は次のとおりです。

\begin{aligned}
v_t&=\gamma v_{t-1}+(1-\gamma)(\nabla J(\theta_t))^2\
\theta_{t+1}&=\theta_t-\frac{\eta}{\sqrt{v_t}+\epsilon}\nabla J(\theta_t)
\end{aligned}
ログイン後にコピー

ここで、v_t は、 t タイムステップの二乗勾配の指数加重平均。通常は減衰率 \gamma=0.9 を使用して計算されます。学習率 \eta はパラメータ更新のステップ サイズを制御するために使用され、\epsilon は 0 による除算が発生するのを防ぐために使用される小さな定数です。これらのパラメータは勾配降下法アルゴリズムにおいて重要な役割を果たしており、その値を調整することで最適化プロセスを細かく調整して最適化することができます。

RMSprop オプティマイザの主な利点は、各パラメータの学習率を適応的に調整できるため、トレーニング プロセス中の発振や不安定性が軽減されることです。従来の勾配降下法アルゴリズムと比較して、RMSprop はより高速に収束し、より優れた汎化機能を備えています。さらに、RMSprop は疎勾配も処理できるため、大規模なデータ セットを処理する際の効率が向上します。

ただし、RMSprop にはいくつかの欠点もあります。まず、RMSprop の学習率が小さすぎるため、モデルの収束が遅くなる可能性があります。第 2 に、RMSprop はノイズの多い勾配の影響を受ける可能性があり、その結果、モデルのパフォーマンスが低下します。さらに、RMSprop のパフォーマンスは、初期学習率、減衰率、定数 $\epsilon$ などのハイパーパラメーターにも影響されるため、経験的なパラメーター調整が必要です。

rmsprop オプティマイザーは過学習を防ぐことができますか?

RMSprop オプティマイザーは場合によっては過学習の問題を軽減するのに役立ちますが、過学習を完全に解決するわけではありません。 。 RMSprop オプティマイザは、各パラメータの学習率を適応的に調整して、より迅速に最適なソリューションに収束します。これは、モデルがトレーニング セットで過剰適合するのを防ぐのに役立ちますが、モデルがテスト セットで過剰適合しないことを保証するものではありません。したがって、過剰適合の問題を効果的に軽減するには、通常、正則化、ドロップアウトなどの他の技術が必要になります。

rmsprop オプティマイザーの使用

RMSprop オプティマイザーは、ニューラル ネットワークのトレーニングに使用できる一般的な勾配降下オプティマイザーです。 RMSprop オプティマイザーを使用するための一般的な手順は次のとおりです:

1. 必要なライブラリとデータセットをインポートします

2. ニューラル ネットワークを構築しますモデル

3. RMSprop オプティマイザを初期化し、学習率とその他のハイパーパラメータを指定します

4. モデルをコンパイルし、損失関数を指定し、評価指標

5. モデルをトレーニングし、トレーニング データ セット、バッチ サイズ、トレーニング サイクル数、その他のパラメーターを指定します。

6.モデルのパフォーマンスを評価し、評価用のテスト データ セットを使用します

#7. モデル アーキテクチャ、ハイパーパラメーターなどを調整して、モデルのパフォーマンスをさらに向上させます

以下は Keras API を使用した実装です。 RMSprop オプティマイザーの例:

from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import RMSprop
from keras.datasets import mnist

# Load MNIST dataset
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Preprocess the data
train_images = train_images.reshape((60000, 784))
train_images = train_images.astype('float32') / 255
test_images = test_images.reshape((10000, 784))
test_images = test_images.astype('float32') / 255

# Build the model
model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(784,)))
model.add(Dense(10, activation='softmax'))

# Initialize RMSprop optimizer
optimizer = RMSprop(lr=0.001, rho=0.9)

# Compile the model
model.compile(optimizer=optimizer,
              loss='categorical_crossentropy',
              metrics=['accuracy'])

# Train the model
model.fit(train_images, train_labels, epochs=5, batch_size=128)

# Evaluate the model
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)
ログイン後にコピー
上記のコードでは、最初に MNIST データセットをロードして前処理します。次に、Keras を使用して 2 つの完全に接続された層を持つニューラル ネットワーク モデルを構築し、RMSprop オプティマイザーを使用して最適化します。学習率を 0.001、rho パラメーターを 0.9 に指定しました。次に、クロスエントロピーを損失関数として、精度を評価指標として使用してモデルをコンパイルします。次に、トレーニング データセットを使用してモデルをトレーニングし、トレーニング エポック数を 5、バッチ サイズを 128 に指定しました。最後に、テスト データセットを使用してモデルのパフォーマンスを評価し、テスト精度を出力します。

以上がRMSprop アルゴリズムの改善の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

ORB-SLAM3を超えて! SL-SLAM: 低照度、重度のジッター、弱いテクスチャのシーンはすべて処理されます。 ORB-SLAM3を超えて! SL-SLAM: 低照度、重度のジッター、弱いテクスチャのシーンはすべて処理されます。 May 30, 2024 am 09:35 AM

以前に書きましたが、今日は、深層学習テクノロジーが複雑な環境におけるビジョンベースの SLAM (同時ローカリゼーションとマッピング) のパフォーマンスをどのように向上させることができるかについて説明します。ここでは、深部特徴抽出と深度マッチング手法を組み合わせることで、低照度条件、動的照明、テクスチャの弱い領域、激しいセックスなどの困難なシナリオでの適応を改善するように設計された多用途のハイブリッド ビジュアル SLAM システムを紹介します。当社のシステムは、拡張単眼、ステレオ、単眼慣性、ステレオ慣性構成を含む複数のモードをサポートしています。さらに、他の研究にインスピレーションを与えるために、ビジュアル SLAM と深層学習手法を組み合わせる方法も分析します。公開データセットと自己サンプリングデータに関する広範な実験を通じて、測位精度と追跡堅牢性の点で SL-SLAM の優位性を実証しました。

1 つの記事で理解: AI、機械学習、ディープラーニングのつながりと違い 1 つの記事で理解: AI、機械学習、ディープラーニングのつながりと違い Mar 02, 2024 am 11:19 AM

今日の急速な技術変化の波の中で、人工知能 (AI)、機械学習 (ML)、および深層学習 (DL) は輝かしい星のようなもので、情報技術の新しい波をリードしています。これら 3 つの単語は、さまざまな最先端の議論や実践で頻繁に登場しますが、この分野に慣れていない多くの探検家にとって、その具体的な意味や内部のつながりはまだ謎に包まれているかもしれません。そこで、まずはこの写真を見てみましょう。ディープラーニング、機械学習、人工知能の間には密接な相関関係があり、進歩的な関係があることがわかります。ディープラーニングは機械学習の特定の分野であり、機械学習

超強い!深層学習アルゴリズムのトップ 10! 超強い!深層学習アルゴリズムのトップ 10! Mar 15, 2024 pm 03:46 PM

2006 年にディープ ラーニングの概念が提案されてから、ほぼ 20 年が経過しました。ディープ ラーニングは、人工知能分野における革命として、多くの影響力のあるアルゴリズムを生み出してきました。では、ディープラーニングのトップ 10 アルゴリズムは何だと思いますか?私の考えでは、ディープ ラーニングのトップ アルゴリズムは次のとおりで、いずれもイノベーション、アプリケーションの価値、影響力の点で重要な位置を占めています。 1. ディープ ニューラル ネットワーク (DNN) の背景: ディープ ニューラル ネットワーク (DNN) は、多層パーセプトロンとも呼ばれ、最も一般的なディープ ラーニング アルゴリズムです。最初に発明されたときは、コンピューティング能力のボトルネックのため疑問視されていました。最近まで長年にわたる計算能力、データの爆発的な増加によって画期的な進歩がもたらされました。 DNN は、複数の隠れ層を含むニューラル ネットワーク モデルです。このモデルでは、各層が入力を次の層に渡し、

CNN と Transformer のハイブリッド モデルを使用してパフォーマンスを向上させる方法 CNN と Transformer のハイブリッド モデルを使用してパフォーマンスを向上させる方法 Jan 24, 2024 am 10:33 AM

畳み込みニューラル ネットワーク (CNN) と Transformer は、さまざまなタスクで優れたパフォーマンスを示した 2 つの異なる深層学習モデルです。 CNN は主に、画像分類、ターゲット検出、画像セグメンテーションなどのコンピューター ビジョン タスクに使用されます。畳み込み演算を通じて画像上の局所的な特徴を抽出し、プーリング演算を通じて特徴の次元削減と空間的不変性を実行します。対照的に、Transformer は主に、機械翻訳、テキスト分類、音声認識などの自然言語処理 (NLP) タスクに使用されます。セルフアテンション メカニズムを使用してシーケンス内の依存関係をモデル化し、従来のリカレント ニューラル ネットワークにおける逐次計算を回避します。これら 2 つのモデルは異なるタスクに使用されますが、シーケンス モデリングでは類似点があるため、

テキスト分類に双方向 LSTM モデルを使用するケーススタディ テキスト分類に双方向 LSTM モデルを使用するケーススタディ Jan 24, 2024 am 10:36 AM

双方向 LSTM モデルは、テキスト分類に使用されるニューラル ネットワークです。以下は、テキスト分類タスクに双方向 LSTM を使用する方法を示す簡単な例です。まず、必要なライブラリとモジュールをインポートする必要があります: importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Em

AlphaFold 3 が発売され、タンパク質とすべての生体分子の相互作用と構造をこれまでよりもはるかに高い精度で包括的に予測します。 AlphaFold 3 が発売され、タンパク質とすべての生体分子の相互作用と構造をこれまでよりもはるかに高い精度で包括的に予測します。 Jul 16, 2024 am 12:08 AM

エディター | Radish Skin 2021 年の強力な AlphaFold2 のリリース以来、科学者はタンパク質構造予測モデルを使用して、細胞内のさまざまなタンパク質構造をマッピングし、薬剤を発見し、既知のあらゆるタンパク質相互作用の「宇宙地図」を描いてきました。ちょうど今、Google DeepMind が AlphaFold3 モデルをリリースしました。このモデルは、タンパク質、核酸、小分子、イオン、修飾残基を含む複合体の結合構造予測を実行できます。 AlphaFold3 の精度は、これまでの多くの専用ツール (タンパク質-リガンド相互作用、タンパク質-核酸相互作用、抗体-抗原予測) と比較して大幅に向上しました。これは、単一の統合された深層学習フレームワーク内で、次のことを達成できることを示しています。

畳み込みニューラル ネットワークを使用した画像のノイズ除去 畳み込みニューラル ネットワークを使用した画像のノイズ除去 Jan 23, 2024 pm 11:48 PM

畳み込みニューラル ネットワークは、画像のノイズ除去タスクで優れたパフォーマンスを発揮します。学習したフィルターを利用してノイズを除去し、元の画像を復元します。この記事では、畳み込みニューラル ネットワークに基づく画像ノイズ除去方法を詳しく紹介します。 1. 畳み込みニューラル ネットワークの概要 畳み込みニューラル ネットワークは、複数の畳み込み層、プーリング層、全結合層の組み合わせを使用して画像の特徴を学習および分類する深層学習アルゴリズムです。畳み込み層では、畳み込み演算を通じて画像の局所的な特徴が抽出され、それによって画像内の空間相関が捕捉されます。プーリング層は、特徴の次元を削減することで計算量を削減し、主要な特徴を保持します。完全に接続された層は、学習した特徴とラベルをマッピングして画像分類やその他のタスクを実装する役割を果たします。このネットワーク構造の設計により、畳み込みニューラル ネットワークは画像処理と認識に役立ちます。

ツイン ニューラル ネットワーク: 原理と応用分析 ツイン ニューラル ネットワーク: 原理と応用分析 Jan 24, 2024 pm 04:18 PM

シャム ニューラル ネットワークは、ユニークな人工ニューラル ネットワーク構造です。これは、同じパラメーターと重みを共有する 2 つの同一のニューラル ネットワークで構成されます。同時に、2 つのネットワークは同じ入力データも共有します。 2 つのニューラル ネットワークは構造的に同一であるため、このデザインは双子からインスピレーションを得ています。シャム ニューラル ネットワークの原理は、2 つの入力データ間の類似性や距離を比較することによって、画像マッチング、テキスト マッチング、顔認識などの特定のタスクを完了することです。トレーニング中、ネットワークは、類似したデータを隣接する領域にマッピングし、異なるデータを離れた領域にマッピングしようとします。このようにして、ネットワークはさまざまなデータを分類または照合する方法を学習して、対応するデータを実現できます。

See all articles