一般的に使用される教師なし学習アルゴリズムを紹介する
教師なし学習は、ラベル付きの例を使用しない機械学習手法であり、その目的はデータ内のパターンや構造を発見することです。このアルゴリズムには入力データのみが提供され、データの構造を独自に検出します。
1. クラスタリング アルゴリズム
このアルゴリズムは、類似性に基づいてサンプルをクラスターにグループ化するために使用されます。クラスタリングの目的は、各グループの例の類似性が高くなるようにデータをグループに分割することです。
クラスタリング手法には、重心ベースの手法、密度ベースの手法、階層型手法など、数多くあります。 K 平均法などの重心ベースの方法では、データが K 個のクラスターに分割され、各クラスターは重心によって定義されます (つまり、代表的な例)。 DBSCAN などの密度ベースの方法では、サンプルの密度に基づいてデータをクラスターに分割します。凝集クラスタリングなどの階層的手法は、各例が最初に独自のクラスターであるとみなされ、その後、類似性に基づいてクラスターがマージされるクラスターの階層構造を構築します。
2. 次元削減アルゴリズム
次元削減アルゴリズムは、データ セット内の特徴の数を削減するために使用される手法です。その目標は、できる限り多くの情報を保持しながら、データの複雑さを軽減し、過剰適合を防ぐことです。機械学習では、学習アルゴリズムのパフォーマンスを向上させるために、次元削減アルゴリズムがよく使用されます。さらに、次元の数を減らし、データを低次元の空間にマッピングすることで、データの管理と描画を容易にする、データの視覚化にも使用できます。
次元削減には、線形法や非線形法など、さまざまな方法があります。線形手法には、データ内の最大の分散を捉える特徴の線形結合を見つける主成分分析 (PCA) や線形判別分析 (LDA) などの手法が含まれます。非線形手法には、データのローカル構造を保存する t-SNE や ISOMAP などの手法が含まれます。
線形および非線形方法に加えて、特徴選択方法 (最も重要な特徴のサブセットを選択する) および特徴抽出方法 (データをより少ないデータで新しい空間に変換する) もあります。寸法)。
3. 異常検出
これは教師なし学習の一種で、残りの部分と比較して異常または予期しない例を特定することが含まれます。データ。異常検出アルゴリズムは、不正行為の検出や故障した機器の特定によく使用されます。異常検出には、統計的手法、距離ベースの手法、密度ベースの手法など、さまざまな手法があります。統計的手法には、平均や標準偏差などのデータの統計的特性を計算し、特定の範囲外にある例を識別することが含まれます。距離ベースの方法では、サンプルとデータの大部分の間の距離を計算し、遠すぎるサンプルを特定します。密度ベースの手法には、データの低密度領域の例の識別が含まれます
4. オートエンコーダ
オートエンコーダは、次元性を測定するために使用される手法です。リダクションニューラルネットワーク。これは、入力データを低次元表現にエンコードし、それを元の空間にデコードして戻すことによって機能します。オートエンコーダーは、データ圧縮、ノイズ除去、異常検出などのタスクに一般的に使用されます。これらは、最も重要な特徴を捕捉するデータの低次元表現を学習できるため、高次元で多数の特徴を持つデータセットに特に役立ちます。
5. 生成モデル
これらのアルゴリズムは、データの分布を学習し、トレーニング データに似た新しいサンプルを生成するために使用されます。人気のある生成モデルには、敵対的生成ネットワーク (GAN) や変分オートエンコーダー (VAE) などがあります。生成モデルには、データ生成、画像生成、言語モデリングなど、多くの用途があります。これらは、スタイル転送や画像の超解像度などのタスクにも使用されます。
6. 相関ルール学習
このアルゴリズムは、データセット内の変数間の関係を発見するために使用されます。頻繁に購入される商品を特定するために、ショッピング カート分析でよく使用されます。一般的な相関ルール学習アルゴリズムは、Apriori アルゴリズムです。
7. 自己組織化マップ (SOM)
自己組織化マップ (SOM) は、視覚化と特徴学習に使用されるニューラル ネットワークです。建築。これらは、高次元データの構造を発見するために使用できる教師なし学習アルゴリズムです。 SOM は、データの視覚化、クラスタリング、異常検出などのタスクに一般的に使用されます。これらは、元のデータでは明らかではないパターンや関係を明らかにできるため、2 次元空間で高次元データを視覚化する場合に特に役立ちます。
以上が一般的に使用される教師なし学習アルゴリズムを紹介するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











画像の注釈は、ラベルまたは説明情報を画像に関連付けて、画像の内容に深い意味と説明を与えるプロセスです。このプロセスは機械学習にとって重要であり、画像内の個々の要素をより正確に識別するために視覚モデルをトレーニングするのに役立ちます。画像に注釈を追加することで、コンピュータは画像の背後にあるセマンティクスとコンテキストを理解できるため、画像の内容を理解して分析する能力が向上します。画像アノテーションは、コンピュータ ビジョン、自然言語処理、グラフ ビジョン モデルなどの多くの分野をカバーする幅広い用途があり、車両が道路上の障害物を識別するのを支援したり、障害物の検出を支援したりするなど、幅広い用途があります。医用画像認識による病気の診断。この記事では主に、より優れたオープンソースおよび無料の画像注釈ツールをいくつか推奨します。 1.マケセンス

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

平たく言えば、機械学習モデルは、入力データを予測された出力にマッピングする数学関数です。より具体的には、機械学習モデルは、予測出力と真のラベルの間の誤差を最小限に抑えるために、トレーニング データから学習することによってモデル パラメーターを調整する数学関数です。機械学習には、ロジスティック回帰モデル、デシジョン ツリー モデル、サポート ベクター マシン モデルなど、多くのモデルがあります。各モデルには、適用可能なデータ タイプと問題タイプがあります。同時に、異なるモデル間には多くの共通点があったり、モデル進化の隠れた道が存在したりすることがあります。コネクショニストのパーセプトロンを例にとると、パーセプトロンの隠れ層の数を増やすことで、それをディープ ニューラル ネットワークに変換できます。パーセプトロンにカーネル関数を追加すると、SVM に変換できます。これです

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります

機械学習の分野における Go 言語の応用可能性は次のとおりです。 同時実行性: 並列プログラミングをサポートし、機械学習タスクにおける計算量の多い操作に適しています。効率: ガベージ コレクターと言語機能により、大規模なデータ セットを処理する場合でもコードの効率が保証されます。使いやすさ: 構文が簡潔なので、機械学習アプリケーションの学習と作成が簡単です。
