機械学習における特徴量エンジニアリングの重要性と応用
特徴エンジニアリングとは、元のデータを処理し、問題に役立つ特徴を抽出して、機械学習アルゴリズムのトレーニングを促進することです。機械学習の分野では、特徴量エンジニアリングはモデルのパフォーマンスを向上させる重要な要素の 1 つです。特徴を慎重に選択して変換することにより、モデルの精度と堅牢性を向上させることができます。優れた特徴量エンジニアリングは、アルゴリズムがデータからより適切に学習し、データ内の隠れたパターンや相関関係を発見するのに役立ちます。ノイズと冗長な情報を削減し、モデルの一般化能力を向上させ、データの不均衡や値の欠落などの問題に対処するのに役立ちます。したがって、特徴エンジニアリングの重要性は無視できません。機械学習を提供できます。
特徴エンジニアリング手法には次のものが含まれます。
特徴選択: モデルにとって有用な特徴を選択し、無駄な特徴を削除し、そして次元の災害を避けてください。
特徴抽出: テキスト分類タスクにおける単語、単語頻度、その他の特徴など、生データから有用な特徴を抽出します。
特徴構築とは、元のデータを計算、結合、変換して新しい特徴を作成し、モデルのパフォーマンスを向上させることです。時系列予測タスクでは、ラグや移動平均などの機能を使用して、モデルの予測機能を強化できます。ヒステリシス機能を導入すると、過去の時点の観測値を使用して将来の値を予測できます。移動平均機能はデータを平滑化し、傾向や季節パターンを把握するのに役立ちます。これらの新しい機能により、モデルにより多くの情報が提供され、予測精度が向上します 特徴スケーリング: モデルのトレーニングを容易にするために、異なる特徴が同じスケールになるように特徴をスケーリングします。
特徴量エンジニアリングの設計は問題の特性に基づく必要があり、データの深い理解と分析が必要です。優れた特徴量エンジニアリングにより、モデルの精度と堅牢性が向上し、ビジネス価値が向上します。
特徴量エンジニアリングとモデルの関係
特徴量エンジニアリングはモデルと密接に関係しており、機械学習において非常に重要な役割を果たします。その目的は、生データから有用な特徴を抽出して、モデルの学習と予測を促進することです。優れた特徴量エンジニアリングによりモデルの精度と堅牢性が向上し、ビジネス価値が向上します。したがって、特徴量エンジニアリングは機械学習において重要な役割を果たします。
特徴エンジニアリングはモデルに次の影響を与えます:
1. モデルの入力特徴: 特徴エンジニアリングはモデルの入力特徴を決定し、モデルのパフォーマンスに直接影響します。特徴エンジニアリングにより、特徴の区別が改善され、ノイズと冗長性が削減され、それによってモデルの精度と堅牢性が向上します。
2. モデルの複雑さ: 特徴エンジニアリングにより、モデルの複雑さを軽減し、過剰適合を回避できます。モデルにとって有用な特徴を選択し、無駄な特徴を削除し、次元を削減することにより、モデル内のパラメータの数を削減し、モデルの汎化能力を向上させることができます。
3. モデルのトレーニング速度: 特徴量エンジニアリングにより、モデルのトレーニング時間を短縮できます。低次元の特徴、スケーリング特徴などを選択することにより、モデルのトレーニング プロセスを高速化できます。
したがって、特徴量エンジニアリングとモデルは切り離せないものです。優れた特徴エンジニアリングにより、モデルの入力特徴が最適化され、モデルの複雑さが軽減され、モデルのトレーニング プロセスが加速され、それによってモデルのパフォーマンスと効率が向上します。
機械学習特徴エンジニアリングのアルゴリズム
機械学習特徴エンジニアリングのアルゴリズムには次のものが含まれます:
主成分分析 (PCA): PCA は教師なし特徴抽出アルゴリズムです。線形変換を通じて低次元空間にマッピングされ、データ内の主要な情報を保持してモデルの学習を容易にします。
線形判別分析 (LDA): LDA は、分類タスクを容易にするデータ カテゴリ情報を保持しながら、線形変換を通じて元の特徴を低次元空間にマッピングする教師あり特徴抽出アルゴリズムです。
カーネル法: カーネル法は、元の特徴を高次元空間にマッピングすることで、線形分離不可能な問題を線形分離可能にする非線形特徴抽出手法です。
特徴選択アルゴリズム: 特徴選択アルゴリズムには、元の特徴からモデルに有用な特徴を選択するために使用されるフィルター、ラッピング、および埋め込みメソッドが含まれます。
畳み込みニューラル ネットワーク (CNN): CNN は、畳み込み、プーリング、その他の操作を通じて元の特徴を抽出し、画像、音声、その他のタスクの処理を容易にする深層学習アルゴリズムです。
リカレント ニューラル ネットワーク (RNN): RNN は、テキスト、時系列、その他のタスクの処理を容易にするために、循環構造を通じてシーケンス データをモデル化する深層学習アルゴリズムです。
オートエンコーダー (AE): AE は、データの圧縮表現を学習してその後のモデル学習を容易にする教師なし特徴抽出アルゴリズムです。
これらのアルゴリズムは単独で使用することも、組み合わせて使用することもでき、特定の問題に応じて特徴量エンジニアリングに適切なアルゴリズムを選択できます。
以上が機械学習における特徴量エンジニアリングの重要性と応用の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









画像の注釈は、ラベルまたは説明情報を画像に関連付けて、画像の内容に深い意味と説明を与えるプロセスです。このプロセスは機械学習にとって重要であり、画像内の個々の要素をより正確に識別するために視覚モデルをトレーニングするのに役立ちます。画像に注釈を追加することで、コンピュータは画像の背後にあるセマンティクスとコンテキストを理解できるため、画像の内容を理解して分析する能力が向上します。画像アノテーションは、コンピュータ ビジョン、自然言語処理、グラフ ビジョン モデルなどの多くの分野をカバーする幅広い用途があり、車両が道路上の障害物を識別するのを支援したり、障害物の検出を支援したりするなど、幅広い用途があります。医用画像認識による病気の診断。この記事では主に、より優れたオープンソースおよび無料の画像注釈ツールをいくつか推奨します。 1.マケセンス

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

平たく言えば、機械学習モデルは、入力データを予測された出力にマッピングする数学関数です。より具体的には、機械学習モデルは、予測出力と真のラベルの間の誤差を最小限に抑えるために、トレーニング データから学習することによってモデル パラメーターを調整する数学関数です。機械学習には、ロジスティック回帰モデル、デシジョン ツリー モデル、サポート ベクター マシン モデルなど、多くのモデルがあります。各モデルには、適用可能なデータ タイプと問題タイプがあります。同時に、異なるモデル間には多くの共通点があったり、モデル進化の隠れた道が存在したりすることがあります。コネクショニストのパーセプトロンを例にとると、パーセプトロンの隠れ層の数を増やすことで、それをディープ ニューラル ネットワークに変換できます。パーセプトロンにカーネル関数を追加すると、SVM に変換できます。これです

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります

MetaFAIR はハーバード大学と協力して、大規模な機械学習の実行時に生成されるデータの偏りを最適化するための新しい研究フレームワークを提供しました。大規模な言語モデルのトレーニングには数か月かかることが多く、数百、さらには数千の GPU を使用することが知られています。 LLaMA270B モデルを例にとると、そのトレーニングには合計 1,720,320 GPU 時間が必要です。大規模なモデルのトレーニングには、これらのワークロードの規模と複雑さにより、特有のシステム上の課題が生じます。最近、多くの機関が、SOTA 生成 AI モデルをトレーニングする際のトレーニング プロセスの不安定性を報告しています。これらは通常、損失スパイクの形で現れます。たとえば、Google の PaLM モデルでは、トレーニング プロセス中に最大 20 回の損失スパイクが発生しました。数値的なバイアスがこのトレーニングの不正確さの根本原因です。
