RNN、LSTM、GRU の概念、違い、長所と短所を調べる
時系列データでは、観測間に依存関係があるため、相互に独立していません。ただし、従来のニューラル ネットワークは各観測値を独立したものとして扱うため、時系列データをモデル化するモデルの能力が制限されます。この問題を解決するために、リカレント ニューラル ネットワーク (RNN) が導入されました。これは、ネットワーク内のデータ ポイント間の依存関係を確立することにより、時系列データの動的特性をキャプチャするためのメモリの概念を導入しました。反復接続を通じて、RNN は以前の情報を現在の観測値に渡して、将来の値をより適切に予測できます。このため、RNN は時系列データを含むタスクにとって強力なツールになります。
しかし、RNN はどのようにしてこの種の記憶を実現するのでしょうか?
RNN は、ニューラル ネットワークのフィードバック ループを通じて記憶を実現します。これが、RNN と従来のニューラル ネットワークの主な違いです。フィードバック ループでは層内で情報を渡すことができますが、フィードフォワード ニューラル ネットワークでは層間でのみ情報が渡されます。したがって、さまざまな種類の RNN があります。
- リカレント ニューラル ネットワーク (RNN)
- 長短期記憶ネットワーク (LSTM)
- Gate Controlled Recurrent Unit Network (GRU)
この記事では、RNN、LSTM、GRU の概念、類似点と相違点、およびそれらの長所と短所のいくつかを紹介します。 。
リカレント ニューラル ネットワーク (RNN)
フィードバック ループを通じて、RNN ユニットの出力は同じユニットによる入力としても使用されます。 。したがって、すべての RNN には過去と現在という 2 つの入力があります。過去の情報を使用すると、短期記憶が作成されます。
よりよく理解するために、RNN ユニットのフィードバック ループを拡張できます。拡張されたセルの長さは、入力シーケンスのタイム ステップ数と等しくなります。
過去の観測が、展開されたネットワークを介して隠れ状態としてどのように渡されるかを確認できます。各セルでは、現在のタイム ステップからの入力、前のタイム ステップからの隠れ状態、およびバイアスが結合され、アクティブ化関数によって制約されて、現在のタイム ステップでの隠れ状態が決定されます。
RNN は、1 対 1、1 対多、多対 1、および多対多の予測に使用できます。
RNN の利点
RNN は、その短期記憶により、連続データを処理し、履歴データのパターンを識別できます。さらに、RNN はさまざまな長さの入力を処理できます。
RNN の欠点
RNN には、勾配降下消失の問題があります。この場合、バックプロパゲーション中に重みを更新するために使用される勾配は非常に小さくなります。ゼロに近い勾配で重みを乗算すると、ネットワークが新しい重みを学習できなくなります。学習を停止すると、RNN は長いシーケンスで見たことを忘れてしまいます。消失勾配降下の問題は、ネットワーク層の数に応じて増加します。
RNN は最新の情報のみを保持するため、過去の観測を考慮する場合、モデルには問題があります。したがって、RNN には短期記憶のみがあり、長期記憶はありません。
さらに、RNN はバックプロパゲーションを使用して重みを時間内に更新するため、ネットワークも勾配爆発の影響を受けます。また、ReLu 活性化関数が使用されている場合は、デッド ReLu の影響を受けます。単位。前者は収束の問題を引き起こす可能性があり、後者は学習の停止を引き起こす可能性があります。
Long Short-Term Memory (LSTM)
LSTM は、RNN における勾配消失の問題を解決する特別なタイプの RNN です。
LSTM の鍵となるのはセルの状態であり、セルの入力から出力に渡されます。セル状態では、3 つのゲートを通る小さな直線アクションだけで、情報がチェーン全体に沿って流れることができます。したがって、セル状態は LSTM の長期メモリを表します。これら 3 つのゲートは、それぞれフォーゲット ゲート、入力ゲート、出力ゲートと呼ばれます。これらのゲートはフィルターとして機能し、情報の流れを制御し、どの情報を保持するか無視するかを決定します。
忘却の門は、どれだけの長期記憶を保持すべきかを決定します。この目的のために、シグモイド関数を使用してセル状態の重要性を考慮します。出力は 0 と 1 の間で変化し、0 は情報を保持せず、1 はセル状態に関するすべての情報を保持します。
入力ゲートは、セルの状態、つまり長期記憶にどのような情報を追加するかを決定します。
#出力ゲートは、セル状態のどの部分が出力を構築するかを決定します。したがって、出力ゲートは短期記憶を担当します。 一般に、状態は忘却ゲートと入力ゲートを通じて更新されます。 LSTM の利点 LSTM の利点は RNN と似ており、主な利点は長期と短期の両方をキャプチャできることです。 -term シーケンスのパターン。したがって、これらは最も一般的に使用される RNN です。 LSTM の欠点 LSTM は構造がより複雑であるため、計算コストが高くなり、トレーニング時間が長くなります。 LSTM は重みを更新するために時間逆伝播アルゴリズムも使用するため、LSTM にはデッド ReLu ユニット、勾配爆発などの逆伝播の欠点があります。 ゲート型再帰ユニット (GRU) LSTM と同様に、GRU は単純な RNN の勾配消失問題を解決します。ただし、LSTM との違いは、GRU では使用するゲートの数が少なく、別個の内部メモリ (セル状態) を持たないことです。したがって、GRU はメモリとして隠れた状態に完全に依存しており、アーキテクチャがより単純になります。 リセット ゲートは、どれだけの過去の情報を保持し無視するかを決定するため、短期記憶を担当します。 更新ゲートは長期記憶を担当し、LSTM の忘却ゲートに相当します。現在のタイム ステップの隠れ状態は 2 つのステップに基づいて決定されます。
最初に、隠れ状態の候補を決定します。候補状態は、現在の入力と前のタイム ステップの隠れ状態、および活性化関数の組み合わせです。候補隠れ状態に対する前の隠れ状態の影響は、リセット ゲートによって制御されます。
2 番目のステップでは、候補の隠れ状態と前のタイム ステップの隠れ状態を組み合わせて、現在の隠れ状態を生成します。以前の隠れ状態と候補の隠れ状態がどのように組み合わされるかは、更新ゲートによって決定されます。
更新ゲートによって与えられた値が 0 の場合、前の隠れ状態は完全に無視され、現在の隠れ状態は候補の隠れ状態と同じになります。更新ゲートの値が 1 の場合は、その逆が当てはまります。
GRU の利点
GRU は、LSTM に比べてアーキテクチャがシンプルであるため、計算効率が高く、トレーニング速度が速く、必要なメモリが少ないだけです。 。
さらに、GRU は小規模なシーケンスに対してより効果的であることが示されています。
GRU の欠点
GRU には個別の隠れ状態とセル状態がないため、 LSTM のような過去の観察が考慮されない可能性があります。
RNN や LSTM と同様に、GRU もバックプロパゲーションと重みのタイムリーな更新の欠点、つまりデッド ReLu ユニットと勾配爆発に悩まされる可能性があります。
以上がRNN、LSTM、GRU の概念、違い、長所と短所を調べるの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究

7月5日のこのウェブサイトのニュースによると、グローバルファウンドリーズは今年7月1日にプレスリリースを発行し、自動車とインターネットでの市場シェア拡大を目指してタゴール・テクノロジーのパワー窒化ガリウム(GaN)技術と知的財産ポートフォリオを買収したことを発表した。モノと人工知能データセンターのアプリケーション分野で、より高い効率とより優れたパフォーマンスを探求します。生成 AI などのテクノロジーがデジタル世界で発展を続ける中、窒化ガリウム (GaN) は、特にデータセンターにおいて、持続可能で効率的な電力管理のための重要なソリューションとなっています。このウェブサイトは、この買収中にタゴール・テクノロジーのエンジニアリングチームがGLOBALFOUNDRIESに加わり、窒化ガリウム技術をさらに開発するという公式発表を引用した。 G
