目次
1. 勾配消失問題の本質的な理由
2. 残差ネットワークの解決策
ホームページ テクノロジー周辺機器 AI 深い残差ネットワークは勾配消失問題をどのように克服するのでしょうか?

深い残差ネットワークは勾配消失問題をどのように克服するのでしょうか?

Jan 22, 2024 pm 08:03 PM
ディープラーニング 人工ニューラルネットワーク

深い残差ネットワークは勾配消失問題をどのように克服するのでしょうか?

残差ネットワークは、残差ブロックを導入することで勾配消失問題を解決する人気の深層学習モデルです。この記事では、勾配消失問題の本質的な原因から始めて、残差ネットワークの解決策を詳細に説明します。

1. 勾配消失問題の本質的な理由

ディープ ニューラル ネットワークでは、各層の出力は、前の層の入力と重み行列を乗算し、活性化関数を通じて計算することによって取得されます。ネットワーク層の数が増えると、各層の出力は前の層の出力の影響を受けます。これは、重み行列と活性化関数の小さな変更であっても、ネットワーク全体の出力に影響を与えることを意味します。 逆伝播アルゴリズムでは、勾配を使用してネットワークの重みを更新します。勾配の計算には、チェーン ルールを通じて次のレイヤーの勾配を前のレイヤーに渡す必要があります。したがって、前のレイヤーの勾配も勾配の計算に影響します。この効果は、トレーニング中に重みが更新され、ネットワーク全体に伝播されるときに蓄積されます。 したがって、ディープ ニューラル ネットワークの各層は相互接続されており、それらの出力と勾配は相互に影響を与えます。そのため、ネットワークが効果的に学習してさまざまなタスクやデータに適応できるようにするために、ネットワークの設計とトレーニングの際に、各層の重みと活性化関数の選択、勾配の計算と送信方法を慎重に検討する必要があります。

ディープ ニューラル ネットワークでは、多くのネットワーク層がある場合、勾配が「消失」または「爆発」することがよくあります。勾配が消える理由は、活性化関数の導関数が 1 より小さい場合、勾配が徐々に縮小し、それ以降の層の勾配が小さくなり、最終的には更新できなくなり、ネットワークが更新できなくなるためです。学ぶために。勾配爆発の理由は、活性化関数の導関数が 1 より大きい場合、勾配が徐々に増加し、その結果、後続の層の勾配が大きくなり、最終的にはネットワークの重みがオーバーフローし、ネットワークが学ぶことができなくなる。

2. 残差ネットワークの解決策

残差ネットワークは、残差ブロックを導入することによって勾配消失の問題を解決します。各ネットワーク層の間で、残差ブロックは入力を出力に直接追加するため、ネットワークがアイデンティティ マッピングを学習しやすくなります。この層間接続設計により、勾配の伝播が改善され、勾配消失現象が効果的に軽減されます。このようなソリューションにより、ネットワークのトレーニング効率とパフォーマンスを向上させることができます。

具体的には、残差ブロックの構造 x は入力を表し、F(x) はネットワーク学習によって得られたマッピングを表し、H(x) は恒等マッピングを表します。残差ブロックの出力は H(x) F(x) で、これは入力に学習されたマッピングを加えたものです。

この利点は、ネットワークが恒等マッピングを学習するとき、F(x) が 0 であり、残差ブロックの出力が入力、つまり H と等しいことです。 (x) 0=H(x)。これにより、F(x) の勾配が 0 であっても、H(x) の勾配を層間接続を通じて前の層に渡すことができるため、勾配消失の問題が回避され、より良い勾配フローが実現されます。

さらに、残余ネットワークでは、「バッチ正規化」や「事前アクティベーション」などのテクノロジーも使用して、ネットワークのパフォーマンスと安定性をさらに強化します。その中で、バッチ正規化は勾配消失と勾配爆発の問題を解決するために使用され、事前アクティブ化は非線形性をより適切に導入し、ネットワークの表現能力を向上させることができます。

以上が深い残差ネットワークは勾配消失問題をどのように克服するのでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

ORB-SLAM3を超えて! SL-SLAM: 低照度、重度のジッター、弱いテクスチャのシーンはすべて処理されます。 ORB-SLAM3を超えて! SL-SLAM: 低照度、重度のジッター、弱いテクスチャのシーンはすべて処理されます。 May 30, 2024 am 09:35 AM

以前に書きましたが、今日は、深層学習テクノロジーが複雑な環境におけるビジョンベースの SLAM (同時ローカリゼーションとマッピング) のパフォーマンスをどのように向上させることができるかについて説明します。ここでは、深部特徴抽出と深度マッチング手法を組み合わせることで、低照度条件、動的照明、テクスチャの弱い領域、激しいセックスなどの困難なシナリオでの適応を改善するように設計された多用途のハイブリッド ビジュアル SLAM システムを紹介します。当社のシステムは、拡張単眼、ステレオ、単眼慣性、ステレオ慣性構成を含む複数のモードをサポートしています。さらに、他の研究にインスピレーションを与えるために、ビジュアル SLAM と深層学習手法を組み合わせる方法も分析します。公開データセットと自己サンプリングデータに関する広範な実験を通じて、測位精度と追跡堅牢性の点で SL-SLAM の優位性を実証しました。

1 つの記事で理解: AI、機械学習、ディープラーニングのつながりと違い 1 つの記事で理解: AI、機械学習、ディープラーニングのつながりと違い Mar 02, 2024 am 11:19 AM

今日の急速な技術変化の波の中で、人工知能 (AI)、機械学習 (ML)、および深層学習 (DL) は輝かしい星のようなもので、情報技術の新しい波をリードしています。これら 3 つの単語は、さまざまな最先端の議論や実践で頻繁に登場しますが、この分野に慣れていない多くの探検家にとって、その具体的な意味や内部のつながりはまだ謎に包まれているかもしれません。そこで、まずはこの写真を見てみましょう。ディープラーニング、機械学習、人工知能の間には密接な相関関係があり、進歩的な関係があることがわかります。ディープラーニングは機械学習の特定の分野であり、機械学習

超強い!深層学習アルゴリズムのトップ 10! 超強い!深層学習アルゴリズムのトップ 10! Mar 15, 2024 pm 03:46 PM

2006 年にディープ ラーニングの概念が提案されてから、ほぼ 20 年が経過しました。ディープ ラーニングは、人工知能分野における革命として、多くの影響力のあるアルゴリズムを生み出してきました。では、ディープラーニングのトップ 10 アルゴリズムは何だと思いますか?私の考えでは、ディープ ラーニングのトップ アルゴリズムは次のとおりで、いずれもイノベーション、アプリケーションの価値、影響力の点で重要な位置を占めています。 1. ディープ ニューラル ネットワーク (DNN) の背景: ディープ ニューラル ネットワーク (DNN) は、多層パーセプトロンとも呼ばれ、最も一般的なディープ ラーニング アルゴリズムです。最初に発明されたときは、コンピューティング能力のボトルネックのため疑問視されていました。最近まで長年にわたる計算能力、データの爆発的な増加によって画期的な進歩がもたらされました。 DNN は、複数の隠れ層を含むニューラル ネットワーク モデルです。このモデルでは、各層が入力を次の層に渡し、

テキスト分類に双方向 LSTM モデルを使用するケーススタディ テキスト分類に双方向 LSTM モデルを使用するケーススタディ Jan 24, 2024 am 10:36 AM

双方向 LSTM モデルは、テキスト分類に使用されるニューラル ネットワークです。以下は、テキスト分類タスクに双方向 LSTM を使用する方法を示す簡単な例です。まず、必要なライブラリとモジュールをインポートする必要があります: importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Em

AlphaFold 3 が発売され、タンパク質とすべての生体分子の相互作用と構造をこれまでよりもはるかに高い精度で包括的に予測します。 AlphaFold 3 が発売され、タンパク質とすべての生体分子の相互作用と構造をこれまでよりもはるかに高い精度で包括的に予測します。 Jul 16, 2024 am 12:08 AM

エディター | Radish Skin 2021 年の強力な AlphaFold2 のリリース以来、科学者はタンパク質構造予測モデルを使用して、細胞内のさまざまなタンパク質構造をマッピングし、薬剤を発見し、既知のあらゆるタンパク質相互作用の「宇宙地図」を描いてきました。ちょうど今、Google DeepMind が AlphaFold3 モデルをリリースしました。このモデルは、タンパク質、核酸、小分子、イオン、修飾残基を含む複合体の結合構造予測を実行できます。 AlphaFold3 の精度は、これまでの多くの専用ツール (タンパク質-リガンド相互作用、タンパク質-核酸相互作用、抗体-抗原予測) と比較して大幅に向上しました。これは、単一の統合された深層学習フレームワーク内で、次のことを達成できることを示しています。

ポートレートカットアウト推論のための TensorFlow 深層学習フレームワークモデル推論パイプライン ポートレートカットアウト推論のための TensorFlow 深層学習フレームワークモデル推論パイプライン Mar 26, 2024 pm 01:00 PM

概要 ModelScope ユーザーがプラットフォームによって提供されるさまざまなモデルを迅速かつ便利に使用できるようにするために、ModelScope 公式モデルの実装と、これらのモデルを推論に使用するために必要なツールを含む、完全に機能する Python ライブラリのセットが提供されます。データの前処理、後処理、効果評価などの機能に関わるコードを提供するとともに、シンプルで使いやすいAPIと豊富な使用例を提供します。このライブラリを呼び出すことで、ユーザーはわずか数行のコードを記述するだけでモデルの推論、トレーニング、評価などのタスクを完了でき、また、これを基に二次開発を迅速に実行して独自の革新的なアイデアを実現することもできます。現在ライブラリによって提供されているアルゴリズム モデルは次のとおりです。

CNN と Transformer のハイブリッド モデルを使用してパフォーマンスを向上させる方法 CNN と Transformer のハイブリッド モデルを使用してパフォーマンスを向上させる方法 Jan 24, 2024 am 10:33 AM

畳み込みニューラル ネットワーク (CNN) と Transformer は、さまざまなタスクで優れたパフォーマンスを示した 2 つの異なる深層学習モデルです。 CNN は主に、画像分類、ターゲット検出、画像セグメンテーションなどのコンピューター ビジョン タスクに使用されます。畳み込み演算を通じて画像上の局所的な特徴を抽出し、プーリング演算を通じて特徴の次元削減と空間的不変性を実行します。対照的に、Transformer は主に、機械翻訳、テキスト分類、音声認識などの自然言語処理 (NLP) タスクに使用されます。セルフアテンション メカニズムを使用してシーケンス内の依存関係をモデル化し、従来のリカレント ニューラル ネットワークにおける逐次計算を回避します。これら 2 つのモデルは異なるタスクに使用されますが、シーケンス モデリングでは類似点があるため、

畳み込みニューラル ネットワークを使用した画像のノイズ除去 畳み込みニューラル ネットワークを使用した画像のノイズ除去 Jan 23, 2024 pm 11:48 PM

畳み込みニューラル ネットワークは、画像のノイズ除去タスクで優れたパフォーマンスを発揮します。学習したフィルターを利用してノイズを除去し、元の画像を復元します。この記事では、畳み込みニューラル ネットワークに基づく画像ノイズ除去方法を詳しく紹介します。 1. 畳み込みニューラル ネットワークの概要 畳み込みニューラル ネットワークは、複数の畳み込み層、プーリング層、全結合層の組み合わせを使用して画像の特徴を学習および分類する深層学習アルゴリズムです。畳み込み層では、畳み込み演算を通じて画像の局所的な特徴が抽出され、それによって画像内の空間相関が捕捉されます。プーリング層は、特徴の次元を削減することで計算量を削減し、主要な特徴を保持します。完全に接続された層は、学習した特徴とラベルをマッピングして画像分類やその他のタスクを実装する役割を果たします。このネットワーク構造の設計により、畳み込みニューラル ネットワークは画像処理と認識に役立ちます。

See all articles