目次
1. 特徴選択の重要性
2. 特徴選択にデシジョン ツリー分類子を使用する
ホームページ テクノロジー周辺機器 AI デシジョン ツリー分類子を使用して、データ セット内の主要な特徴の選択方法を決定する

デシジョン ツリー分類子を使用して、データ セット内の主要な特徴の選択方法を決定する

Jan 22, 2024 pm 08:21 PM
機械学習 特徴エンジニアリング

デシジョン ツリー分類子を使用して、データ セット内の主要な特徴の選択方法を決定する

デシジョン ツリー分類器は、ツリー構造に基づく教師あり学習アルゴリズムです。データセットを複数の意思決定単位に分割し、各単位が特徴条件のセットと予測出力値に対応します。分類タスクでは、決定木分類器はトレーニング データ セット内の特徴とラベル間の関係を学習することによって決定木モデルを構築し、新しいサンプルを対応する予測出力値に分類します。このプロセスでは、重要な機能を選択することが重要です。この記事では、デシジョン ツリー分類子を使用してデータセットから重要な特徴を選択する方法について説明します。

1. 特徴選択の重要性

特徴選択は、ターゲット変数をより正確に予測し、元のデータから最も代表的なものを選択することです。セットの性的特徴。実際のアプリケーションでは、多くの冗長な特徴や無関係な特徴が存在する可能性があり、これらがモデルの学習プロセスを妨げ、モデルの汎化能力の低下につながります。したがって、最も代表的な特徴のセットを選択すると、モデルのパフォーマンスを効果的に向上させ、過剰適合のリスクを軽減できます。

2. 特徴選択にデシジョン ツリー分類子を使用する

デシジョン ツリー分類子は、ツリー構造に基づく分類子です。情報獲得を使用して機能の重要性を評価します。得られる情報が大きいほど、分類結果に対する特徴の影響も大きくなります。したがって、決定木分類器では、より大きな情報利得を持つ特徴が分類のために選択されます。特徴選択の手順は次のとおりです:

1. 各特徴の情報利得を計算します

情報利得とは影響度を指します分類結果の特徴量。エントロピーによって測定できます。エントロピーが小さいほど、データセットの純度は高くなります。これは、分類に対する特徴の影響が大きくなることを意味します。決定木分類器では、各特徴の情報ゲインは次の式を使用して計算できます:

\operatorname{Gain}(F)=\operatorname{Ent}(S)-\ sum_ {v\in\operatorname{Values}(F)}\frac{\left|S_{v}\right|}{|S|}\operatorname{Ent}\left(S_{v}\right)

このうち、 \operatorname{Ent}(S) はデータ集合 S のエントロピーを表し、 \left|S_{v}\right| は特徴 F 値が v であるサンプル集合を表します, \operatorname{ Ent}\left(S_{v}\right) は、値 v のサンプルセットのエントロピーを表します。得られる情報が大きくなるほど、この機能が分類結果に与える影響も大きくなります。

2. 最大の情報利得を持つ特徴を選択します

各特徴の情報利得を計算した後、最大の情報を持つ特徴を選択します分類器の分割特徴としてのゲイン。次に、この特徴に基づいてデータ セットが複数のサブセットに分割され、停止条件が満たされるまで各サブセットに対して上記の手順が再帰的に実行されます。

3. 停止条件

  • #決定木分類子による決定木を再帰的に構築するプロセスは、停止条件を満たす必要があります。通常、次の条件が含まれます。 ケース:
  • サンプル セットが空であるか、1 つのカテゴリのサンプルのみが含まれており、サンプル セットがリーフ ノードに分割されています。
  • すべての特徴の情報利得は特定のしきい値未満であり、サンプル セットはリーフ ノードに分割されます。
  • ツリーの深さが事前に設定された最大値に達し、サンプル セットがリーフ ノードに分割されます。

4. 過学習の回避

#​​

##デシジョン ツリーを構築するとき、過学習を避けるために枝刈り技術を使用できます。枝刈りとは、モデルの複雑さを軽減し、汎化能力を向上させるために、生成された決定木を枝刈りし、いくつかの不要な枝を削除することを指します。一般的に使用される剪定方法には、前剪定と​​後剪定があります。

事前枝刈りとは、決定木の生成プロセス中に各ノードを評価することを意味します。現在のノードの分割によってモデルのパフォーマンスが改善できない場合、分割は停止され、ノードはノードはリーフノードとして設定されます。事前剪定の利点は計算が簡単なことですが、欠点はアンダーフィットになりやすいことです。

ポスト枝刈りとは、デシジョン ツリーが生成された後に、生成されたデシジョン ツリーを枝刈りすることを指します。具体的な方法は、決定木の一部のノードを葉ノードに置き換え、枝刈り後のモデルのパフォーマンスを計算するというものです。プルーニング後にモデルのパフォーマンスが低下せずに増加した場合、プルーニングされたモデルは保持されます。ポスト枝刈りの利点は、過剰適合を軽減できることですが、欠点は計算が複雑になることです。

以上がデシジョン ツリー分類子を使用して、データ セット内の主要な特徴の選択方法を決定するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

オープンソースの無料画像注釈ツールおすすめ 15 選 オープンソースの無料画像注釈ツールおすすめ 15 選 Mar 28, 2024 pm 01:21 PM

画像の注釈は、ラベルまたは説明情報を画像に関連付けて、画像の内容に深い意味と説明を与えるプロセスです。このプロセスは機械学習にとって重要であり、画像内の個々の要素をより正確に識別するために視覚モデルをトレーニングするのに役立ちます。画像に注釈を追加することで、コンピュータは画像の背後にあるセマンティクスとコンテキストを理解できるため、画像の内容を理解して分析する能力が向上します。画像アノテーションは、コンピュータ ビジョン、自然言語処理、グラフ ビジョン モデルなどの多くの分野をカバーする幅広い用途があり、車両が道路上の障害物を識別するのを支援したり、障害物の検出を支援したりするなど、幅広い用途があります。医用画像認識による病気の診断。この記事では主に、より優れたオープンソースおよび無料の画像注釈ツールをいくつか推奨します。 1.マケセンス

この記事では、SHAP: 機械学習のモデルの説明について説明します。 この記事では、SHAP: 機械学習のモデルの説明について説明します。 Jun 01, 2024 am 10:58 AM

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

透明!主要な機械学習モデルの原理を徹底的に分析! 透明!主要な機械学習モデルの原理を徹底的に分析! Apr 12, 2024 pm 05:55 PM

平たく言えば、機械学習モデルは、入力データを予測された出力にマッピングする数学関数です。より具体的には、機械学習モデルは、予測出力と真のラベルの間の誤差を最小限に抑えるために、トレーニング データから学習することによってモデル パラメーターを調整する数学関数です。機械学習には、ロジスティック回帰モデル、デシジョン ツリー モデル、サポート ベクター マシン モデルなど、多くのモデルがあります。各モデルには、適用可能なデータ タイプと問題タイプがあります。同時に、異なるモデル間には多くの共通点があったり、モデル進化の隠れた道が存在したりすることがあります。コネクショニストのパーセプトロンを例にとると、パーセプトロンの隠れ層の数を増やすことで、それをディープ ニューラル ネットワークに変換できます。パーセプトロンにカーネル関数を追加すると、SVM に変換できます。これです

学習曲線を通じて過学習と過小学習を特定する 学習曲線を通じて過学習と過小学習を特定する Apr 29, 2024 pm 06:50 PM

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

宇宙探査と人類居住工学における人工知能の進化 宇宙探査と人類居住工学における人工知能の進化 Apr 29, 2024 pm 03:25 PM

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 Jun 03, 2024 pm 01:25 PM

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

説明可能な AI: 複雑な AI/ML モデルの説明 説明可能な AI: 複雑な AI/ML モデルの説明 Jun 03, 2024 pm 10:08 PM

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります

あなたが知らない機械学習の 5 つの流派 あなたが知らない機械学習の 5 つの流派 Jun 05, 2024 pm 08:51 PM

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

See all articles