目次
レコメンドアルゴリズムは主に 3 つのタイプに分類されます。
コンテンツベースのフィルタリング
コンテンツ ベース フィルタリングの利点
コンテンツ ベースのフィルタリングの欠点
協調フィルタリング
協調フィルタリングは 2 つのカテゴリに分類できます。
協調フィルタリングの利点
協調フィルタリングの欠点
ハイブリッド推奨アルゴリズム
ハイブリッド レコメンデーション システムの利点
ハイブリッド レコメンダー システムの欠点
ホームページ テクノロジー周辺機器 AI 機械学習における推奨アルゴリズムの応用

機械学習における推奨アルゴリズムの応用

Jan 22, 2024 pm 10:36 PM
機械学習

機械学習における推奨アルゴリズムの応用

レコメンデーション アルゴリズムは、電子商取引やショート ビデオ業界で広く使用されており、ユーザーの好みや興味を分析し、大量のデータをフィルタリングして処理し、最も関連性の高い情報をユーザーに提供します。このアルゴリズムは、ユーザーの個人的なニーズに基づいて、興味のあるコンテンツを正確に推奨できます。

推奨アルゴリズムは、ユーザーとオブジェクトの互換性、およびユーザーとアイテムの類似性を判断して推奨を行うために使用される手法です。このアルゴリズムは、ユーザーと提供されるサービスの両方にとって非常に役立ちます。これらのソリューションを使用すると、品質と意思決定のプロセスを改善できます。さらに、このようなアルゴリズムは、映画、書籍、ニュース、記事、仕事、広告などのさまざまなアイテムを推奨するために広く使用できます。

レコメンドアルゴリズムは主に 3 つのタイプに分類されます。

  1. コンテンツベースのフィルタリング
  2. 協調フィルタリング
  3. ハイブリッドレコメンドシステム

コンテンツベースのフィルタリング

この形式の推奨アルゴリズムは、ユーザーが以前に検索したアイテムのコンテンツに基づいて、関連するアイテムを表示します。ユーザーが気に入った商品の属性・タグをここではコンテンツと呼びます。このタイプのシステムでは、アイテムにキーワードがタグ付けされており、システムはデータベースを検索してユーザーのニーズを理解し、最終的にユーザーが望むさまざまな製品を推奨します。

映画推奨アルゴリズムを例にとると、各映画には、タグまたは属性とも呼ばれるジャンルが割り当てられます。ユーザーが最初にシステムにアクセスしたとき、システムはユーザーに関する情報を何も持っていないとします。したがって、システムはまずユーザーに人気の映画を推奨したり、ユーザーにフォームへの記入を求めたりしてユーザー情報を収集しようとします。時間の経過とともに、アクション映画には良い評価を与え、アニメ映画には低い評価を与えるなど、ユーザーは特定の映画を評価する場合があります。その結果、推奨アルゴリズムはより多くのアクション映画をユーザーに推奨します。

コンテンツ ベース フィルタリングの利点

  • 推奨事項は 1 人のユーザー向けにカスタマイズされるため、このモデルは他のユーザーからのデータを必要としません。
  • 拡張機能を簡単にします。
  • このモデルは、ユーザーの個人的な興味を特定し、他の少数のユーザーにのみ興味のあるアイテムを推奨できます。

コンテンツ ベースのフィルタリングの欠点

  • プロジェクトの機能表現が手作業で設計される限り、この手法には多くのドメイン知識が必要です。
  • モデルは、ユーザーの以前の興味に基づいてのみ推奨を行うことができます。

協調フィルタリング

協調ベースのフィルタリングは、他の同様のユーザーの興味や好みに基づいて消費者に新製品を推奨する方法です。たとえば、オンラインで買い物をする場合、「これを買った人はこんな商品も買っています」などの情報に基づいて、システムが新商品を勧めることがあります。このアプローチは、コンテンツとのユーザーの対話に依存せず、代わりにユーザーの過去の行動に基づいて推奨を行うため、コンテンツベースのフィルタリングよりも優れています。過去のデータを分析することで、ユーザーは今後も同様のアイテムに興味を持つだろうと推測できます。このアプローチにより、コンテンツベースのフィルタリングの制限が回避され、より正確な推奨事項が提供されます。

協調フィルタリングは 2 つのカテゴリに分類できます。

ユーザーベースの協調フィルタリングでは、システムは同様の購入嗜好を持つユーザーを識別し、その購入行動に基づいて類似性を計算します。

アイテムベースの協調フィルタリング アルゴリズムは、消費者が購入したアイテムに類似した他のアイテムを検索します。類似性は、ユーザーではなくアイテムに基づいて計算されます。

協調フィルタリングの利点

  • データが小さい場合でもうまく機能します。
  • このモデルは、ユーザーが特定のアイテムに対する新たな興味を発見するのに役立ちますが、他のユーザーが同じ興味を持っている場合でも、モデルはそのアイテムを推奨する可能性があります。
  • ドメインの知識は必要ありません。

協調フィルタリングの欠点

  • データベースに新しく追加されたオブジェクトについてモデルがトレーニングされていないため、新しいものを処理できません。
  • 二次機能の重要性は無視されます。

ハイブリッド推奨アルゴリズム

さまざまな種類の推奨アルゴリズムにはそれぞれ長所と短所がありますが、単独で使用する場合、特に同じ問題に対して複数のデータ ソースを使用する場合には制限があります。

並列および逐次は、ハイブリッド レコメンデーション システムの最も一般的な設計方法です。並列アーキテクチャでは、複数の推奨アルゴリズムが同時に入力を提供し、その出力結果を組み合わせて 1 つの推奨結果を取得します。シーケンシャル アーキテクチャは、入力パラメータを推奨エンジンに渡します。推奨エンジンは推奨結果を生成し、それをシリーズ内の次のレコメンダーに渡します。この設計アプローチにより、レコメンデーション システムの精度と効率を向上させることができます。

ハイブリッド レコメンデーション システムの利点

ハイブリッド システムは、複数のモデルを統合して、1 つのモデルの欠点を克服します。全体として、これにより単一モデルを使用するデメリットが軽減され、より信頼性の高い推奨事項を生成するのに役立ちます。その結果、ユーザーはより強力でカスタマイズされた推奨事項を受け取るようになります。

ハイブリッド レコメンダー システムの欠点

これらのモデルは計算が難しいことが多く、最新の状態に保つには評価やその他の基準の大規模なデータベースが必要です。最新のメトリクスがなければ、再トレーニングして、更新されたアイテムやさまざまなユーザーからの評価を使用した新しい推奨事項を提供することは困難です。

要約すると、推奨アルゴリズムにより、ユーザーはユーザーの好みに合わせて、好みのオプションや興味のある分野を簡単に選択できるようになります。現在、推奨アルゴリズムは多くの一般的なアプリケーションで使用されています。

以上が機械学習における推奨アルゴリズムの応用の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

オープンソースの無料画像注釈ツールおすすめ 15 選 オープンソースの無料画像注釈ツールおすすめ 15 選 Mar 28, 2024 pm 01:21 PM

画像の注釈は、ラベルまたは説明情報を画像に関連付けて、画像の内容に深い意味と説明を与えるプロセスです。このプロセスは機械学習にとって重要であり、画像内の個々の要素をより正確に識別するために視覚モデルをトレーニングするのに役立ちます。画像に注釈を追加することで、コンピュータは画像の背後にあるセマンティクスとコンテキストを理解できるため、画像の内容を理解して分析する能力が向上します。画像アノテーションは、コンピュータ ビジョン、自然言語処理、グラフ ビジョン モデルなどの多くの分野をカバーする幅広い用途があり、車両が道路上の障害物を識別するのを支援したり、障害物の検出を支援したりするなど、幅広い用途があります。医用画像認識による病気の診断。この記事では主に、より優れたオープンソースおよび無料の画像注釈ツールをいくつか推奨します。 1.マケセンス

この記事では、SHAP: 機械学習のモデルの説明について説明します。 この記事では、SHAP: 機械学習のモデルの説明について説明します。 Jun 01, 2024 am 10:58 AM

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

学習曲線を通じて過学習と過小学習を特定する 学習曲線を通じて過学習と過小学習を特定する Apr 29, 2024 pm 06:50 PM

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

宇宙探査と人類居住工学における人工知能の進化 宇宙探査と人類居住工学における人工知能の進化 Apr 29, 2024 pm 03:25 PM

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

透明!主要な機械学習モデルの原理を徹底的に分析! 透明!主要な機械学習モデルの原理を徹底的に分析! Apr 12, 2024 pm 05:55 PM

平たく言えば、機械学習モデルは、入力データを予測された出力にマッピングする数学関数です。より具体的には、機械学習モデルは、予測出力と真のラベルの間の誤差を最小限に抑えるために、トレーニング データから学習することによってモデル パラメーターを調整する数学関数です。機械学習には、ロジスティック回帰モデル、デシジョン ツリー モデル、サポート ベクター マシン モデルなど、多くのモデルがあります。各モデルには、適用可能なデータ タイプと問題タイプがあります。同時に、異なるモデル間には多くの共通点があったり、モデル進化の隠れた道が存在したりすることがあります。コネクショニストのパーセプトロンを例にとると、パーセプトロンの隠れ層の数を増やすことで、それをディープ ニューラル ネットワークに変換できます。パーセプトロンにカーネル関数を追加すると、SVM に変換できます。これです

C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 Jun 03, 2024 pm 01:25 PM

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

あなたが知らない機械学習の 5 つの流派 あなたが知らない機械学習の 5 つの流派 Jun 05, 2024 pm 08:51 PM

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

フラッシュ アテンションは安定していますか?メタとハーバードは、モデルの重みの偏差が桁違いに変動していることを発見しました フラッシュ アテンションは安定していますか?メタとハーバードは、モデルの重みの偏差が桁違いに変動していることを発見しました May 30, 2024 pm 01:24 PM

MetaFAIR はハーバード大学と協力して、大規模な機械学習の実行時に生成されるデータの偏りを最適化するための新しい研究フレームワークを提供しました。大規模な言語モデルのトレーニングには数か月かかることが多く、数百、さらには数千の GPU を使用することが知られています。 LLaMA270B モデルを例にとると、そのトレーニングには合計 1,720,320 GPU 時間が必要です。大規模なモデルのトレーニングには、これらのワークロードの規模と複雑さにより、特有のシステム上の課題が生じます。最近、多くの機関が、SOTA 生成 AI モデルをトレーニングする際のトレーニング プロセスの不安定性を報告しています。これらは通常、損失スパイクの形で現れます。たとえば、Google の PaLM モデルでは、トレーニング プロセス中に最大 20 回の損失スパイクが発生しました。数値的なバイアスがこのトレーニングの不正確さの根本原因です。

See all articles