画像認識における応用例と誤差逆伝播アルゴリズムの原理
誤差逆伝播は、一般的に使用される機械学習アルゴリズムであり、ニューラル ネットワークのトレーニング、特に画像認識の分野で広く使用されています。この記事では、画像認識におけるこのアルゴリズムの応用、原理、例を紹介します。
1. 誤差逆伝播アルゴリズムの応用
画像認識とは、コンピュータープログラムを使用して数値や画像を分析、処理、分析する方法です。 . 情報や特徴を特定するための理解方法。画像認識では、誤差逆伝播アルゴリズムが広く使用されています。このアルゴリズムは、ニューラル ネットワークをトレーニングすることで認識タスクを実現します。ニューラル ネットワークは、人間の脳内のニューロン間の相互作用をシミュレートする計算モデルであり、複雑な入力データを効率的に処理および分類できます。ニューラル ネットワークの重みとバイアスを継続的に調整することにより、誤差逆伝播アルゴリズムにより、ニューラル ネットワークが徐々に学習し、認識能力を向上させることができます。
誤差逆伝播アルゴリズムは、ニューラル ネットワークの重みとバイアスを調整することで、出力結果と実際の結果の間の誤差を最小限に抑えます。トレーニング プロセスは次のステップで構成されます: ニューラル ネットワークの出力の計算、誤差の計算、各ニューロンへの誤差の逆伝播、誤差に基づいた重みとバイアスの調整。
1. ニューラル ネットワークの重みとバイアスをランダムに初期化します。
2. 一連のトレーニング データを入力して、ニューラル ネットワークの出力を計算します。
3. 出力結果と実際の結果との誤差を計算します。
4. 誤差を逆伝播し、ニューラル ネットワークの重みとバイアスを調整します。
5. 誤差が最小値に達するか、事前に設定されたトレーニング時間に達するまで、手順 2 ~ 4 を繰り返します。
誤差逆伝播アルゴリズムのトレーニング プロセスは、ニューラル ネットワークの出力結果と実際の結果の間の誤差を最小化する最適化問題とみなすことができます。トレーニング プロセス中、アルゴリズムはニューラル ネットワークの重みとバイアスを継続的に調整するため、誤差は徐々に減少し、最終的にはより高い認識精度が達成されます。
誤差逆伝播アルゴリズムの応用は画像認識に限定されるものではなく、音声認識、自然言語処理、その他の分野でも使用できます。その広範な応用により、多くの人工知能テクノロジーをより効率的に実装できるようになります。
2. 誤差逆伝播アルゴリズムの原理
誤差逆伝播アルゴリズムの原理は、次の手順で要約できます:
1. 順伝播: トレーニング サンプルを入力し、ニューラル ネットワークの順伝播を通じて出力結果を計算します。
2. 誤差の計算: 出力結果と実際の結果を比較し、誤差を計算します。
3. 逆伝播: 各ニューロンの重みとバイアスを調整しながら、出力層から入力層に誤差を逆伝播します。
4. 重みとバイアスの更新: バックプロパゲーションによって取得された勾配情報に基づいて、ニューロンの重みとバイアスを更新して、次のラウンドの順方向伝播での誤差を小さくします。
誤差逆伝播アルゴリズムでは、逆伝播プロセスが鍵となります。連鎖ルールを通じて出力層から入力層に誤差を渡し、誤差に対する各ニューロンの寄与度を計算し、寄与度に応じて重みとバイアスを調整します。具体的には、連鎖規則は次の式で表すことができます。
\frac{\partial E}{\partial w_{i,j}}=\frac{\partial E } {\partial y_j}\frac{\partial y_j}{\partial z_j}\frac{\partial z_j}{\partial w_{i,j}}
ここで、E は誤差、w_{i,j} は i 番目のニューロンと j 番目のニューロンを接続する重みを表し、y_j は j 番目のニューロンの出力を表し、z_j は j 番目のニューロンの重み付けされた合計を表します。この式は、接続重みに対する誤差の影響が、活性化関数 \frac{\partial y_j}{\partial z_j} の導関数である出力 y_j と入力 x_i の積で構成されると解釈できます。
連鎖ルールを通じて、誤差は各ニューロンに逆伝播され、誤差に対する各ニューロンの寄与が計算されます。そして、寄与度に応じて重みとバイアスを調整し、次回の順伝播での誤差が小さくなるようにします。
3. 誤差逆伝播アルゴリズムの例
以下は、誤差逆伝播アルゴリズムがどのように画像に適用されるかを示す簡単な例です。識別する。
28x28 の手書きの数字の画像があり、ニューラル ネットワークを使用してこの数字を認識したいとします。この画像を 784 次元のベクトルに拡張し、各ピクセルをニューラル ネットワークへの入力として使用します。
トレーニングには 2 つの隠れ層を持つニューラル ネットワークを使用します。各隠れ層には 64 個のニューロンがあり、出力層には 0 ~ 9 の数字をそれぞれ表す 10 個のニューロンがあります。
まず、ニューラル ネットワークの重みとバイアスをランダムに初期化します。次に、一連のトレーニング データを入力し、順伝播を通じて出力を計算します。出力結果が [0.1,0.2,0.05,0.3,0.02,0.15,0.05,0.1,0.03,0.1] であると仮定します。これは、ニューラル ネットワークがこの画像が 3 番である可能性が最も高いと判断していることを意味します。
次に、出力結果と実際の結果との誤差を計算します。実際の結果が [0,0,0,1,0,0,0,0,0,0] であるとします。これは、この画像の実際の数が 3 であることを意味します。クロスエントロピー損失関数を使用して誤差を計算できます。式は次のとおりです:
E=-\sum_{i=1}^{10}y_i log(p_i )
このうち、y_iは実際の結果のi番目の要素を表し、p_iはニューラルネットワークの出力結果のi番目の要素を表します。実際の結果とニューラル ネットワークの出力を式に代入すると、誤差は 0.356 になります。
次に、誤差をニューラル ネットワークに逆伝播し、各ニューロンの誤差への寄与を計算し、寄与度に基づいて重みとバイアスを調整します。勾配降下法アルゴリズムを使用して、次のように重みとバイアスを更新できます:
w_{i,j}=w_{i,j}-\alpha\frac{\partial E }{\partial w_{i,j}}
このうち、\alpha は学習率を表し、各更新のステップ サイズを調整するために使用されます。重みとバイアスを継続的に調整することで、ニューラルネットワークの出力結果を実際の結果に近づけることができ、認識精度が向上します。
上記は、画像認識における誤差逆伝播アルゴリズムの応用、原理、例です。誤差逆伝播アルゴリズムは、ニューラル ネットワークの重みとバイアスを継続的に調整するため、ニューラル ネットワークは画像をより正確に識別でき、幅広い応用の可能性が得られます。
以上が画像認識における応用例と誤差逆伝播アルゴリズムの原理の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

平たく言えば、機械学習モデルは、入力データを予測された出力にマッピングする数学関数です。より具体的には、機械学習モデルは、予測出力と真のラベルの間の誤差を最小限に抑えるために、トレーニング データから学習することによってモデル パラメーターを調整する数学関数です。機械学習には、ロジスティック回帰モデル、デシジョン ツリー モデル、サポート ベクター マシン モデルなど、多くのモデルがあります。各モデルには、適用可能なデータ タイプと問題タイプがあります。同時に、異なるモデル間には多くの共通点があったり、モデル進化の隠れた道が存在したりすることがあります。コネクショニストのパーセプトロンを例にとると、パーセプトロンの隠れ層の数を増やすことで、それをディープ ニューラル ネットワークに変換できます。パーセプトロンにカーネル関数を追加すると、SVM に変換できます。これです

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

MetaFAIR はハーバード大学と協力して、大規模な機械学習の実行時に生成されるデータの偏りを最適化するための新しい研究フレームワークを提供しました。大規模な言語モデルのトレーニングには数か月かかることが多く、数百、さらには数千の GPU を使用することが知られています。 LLaMA270B モデルを例にとると、そのトレーニングには合計 1,720,320 GPU 時間が必要です。大規模なモデルのトレーニングには、これらのワークロードの規模と複雑さにより、特有のシステム上の課題が生じます。最近、多くの機関が、SOTA 生成 AI モデルをトレーニングする際のトレーニング プロセスの不安定性を報告しています。これらは通常、損失スパイクの形で現れます。たとえば、Google の PaLM モデルでは、トレーニング プロセス中に最大 20 回の損失スパイクが発生しました。数値的なバイアスがこのトレーニングの不正確さの根本原因です。
