Scikit-Learn 機能の選択方法と手順
Scikit-Learn は、一般的に使用される Python 機械学習ライブラリであり、データの前処理、特徴の選択、モデルの選択、評価などの機械学習タスク用の多くのツールを提供します。特徴選択は機械学習の重要なステップの 1 つであり、モデルの複雑さを軽減し、モデルの汎化能力を向上させることで、モデルのパフォーマンスを向上させることができます。 Scikit-Learn を使用すると、機能の選択が非常に簡単になります。まず、さまざまな統計手法 (分散、相関係数など) を使用して、特徴の重要性を評価できます。次に、Scikit-Learn は、再帰的特徴除去 (RFE)、ツリーベースの特徴選択などの一連の特徴選択アルゴリズムを提供します。これらのアルゴリズムは、最も関連性の高い機能を自動的に選択するのに役立ちます。最後に、選択した特徴を使用してモデルをトレーニングし、評価できます。 Scikit-Learn を特徴選択に使用することで、より正確で効率的な機械学習モデルを取得できます。
1. 特徴選択の概要
機械学習における特徴選択は、モデルの複雑さを軽減し、モデルのパフォーマンスを向上させることです。最も関連性の高い機能。目標は、データセットの分離性と予測パフォーマンスを維持しながら、最小限の特徴量を見つけることです。特徴の選択は、次の問題の解決に役立ちます:
1. モデルの汎化能力の向上: 特徴の選択により、ノイズと冗長な特徴が削減され、それによってモデルの汎化能力が向上します。
2. トレーニング時間の短縮: モデルは最も重要な特徴のみを学習すればよいため、特徴を選択するとモデルのトレーニング時間を短縮できます。
3. モデルの解釈可能性の向上: 特徴の選択は、どの特徴がモデルの予測にとって最も重要であるかを理解するのに役立ちます。
特徴選択方法は 3 つのカテゴリに分類できます:
1. フィルタリング方法: これらの方法は、統計または情報理論の方法を使用してそれぞれを評価します。機能を選択し、最も関連性の高い機能を選択します。フィルタリング方法は通常高速ですが、機能間の相互作用が無視される場合があります。
2. ラッピング方法: これらの方法は、モデルのパフォーマンスを特徴選択の指標として使用し、最適な特徴サブセットを見つけようとします。一般に、パッケージング方法はフィルタリング方法よりも正確ですが、時間がかかります。
3. 埋め込み方法: これらの方法では、モデルの一部として特徴選択を使用し、学習プロセス中に最適な特徴サブセットを選択します。一般に、埋め込み手法はフィルタリング手法よりも正確ですが、計算コストが高くなります。
Scikit-Learn では、さまざまな特徴選択方法を使用して、最適な特徴サブセットを選択できます。
2. Scikit-Learn の特徴選択方法
Scikit-Learn は、フィルタリング方法、パッケージ化方法、埋め込みなど、多くの特徴選択方法を提供します。方法。一般的に使用されるいくつかの特徴選択方法を以下に紹介します。
1. 分散選択法
分散選択法は、各特徴の分散を評価し、特徴の高い特徴を選択するフィルタリング手法です。差異の。分散選択方法は、バイナリまたは数値特徴にはうまく機能しますが、カテゴリ特徴にはうまく機能しません。
Scikit-Learn では、VarianceThreshold クラスを使用して分散選択メソッドを実装できます。このクラスは分散しきい値を設定し、分散がしきい値より大きい特徴のみを保持できます。たとえば、次のコードは分散が 0.01 未満の特徴を削除します:
from sklearn.feature_selection import VarianceThreshold # 创建方差选择器对象 selector = VarianceThreshold(threshold=0.01) # 训练方差选择器并应用于数据 X_train_selected = selector.fit_transform(X_train)
2. 相互情報量メソッド
相互情報量メソッドは、それぞれを評価するフィルタリング メソッドです。特徴変数とターゲット変数を選択し、相互情報量の高い特徴を選択します。相互情報量法は、カテゴリ特徴または数値特徴に適しています。
Scikit-Learn では、mutual_info_classif 関数とmutual_info_regression 関数を使用して、カテゴリ特徴と数値特徴の相互情報量を計算できます。例:
from sklearn.feature_selection import mutual_info_classif,mutual_info_regression # 计算数值特征的互信息 mi = mutual_info_regression(X_train, y_train) # 计算分类特征的互信息 mi = mutual_info_classif(X_train, y_train)
相互情報量の高い特徴を持たせるには、次のようにします。
from sklearn.feature_selection import SelectKBest # 创建互信息选择器对象 selector = SelectKBest(mutual_info_classif, k=10) # 训练互信息选择器并应用于数据 X_train_selected = selector.fit_transform(X_train, y_train)
上記のコードは、相互情報量が最も高い 10 個の特徴を選択します。
#3. 再帰的特徴除去手法
#再帰的特徴除去手法は、モデルのパフォーマンスを指標として使用するラッパー メソッドです。特徴選択のために、最適な特徴サブセットを見つけようとします。再帰的特徴削除は、初期の特徴セットから開始され、モデルを使用して特徴をランク付けし、必要な特徴数に達するまで最も重要度の低い特徴を削除します。
Scikit-Learn では、RFECV クラスを使用して再帰的特徴除去メソッドを実装できます。このクラスは、モデルと相互検証方法を設定し、再帰的特徴除去を使用して最適な特徴サブセットを選択できます。例:
from sklearn.feature_selection import RFECV from sklearn.linear_model import LinearRegression # 创建递归特征消除器对象 estimator = LinearRegression() selector = RFECV(estimator, cv=5) # 训练递归特征消除器并应用于数据 X_train_selected = selector.fit_transform(X_train, y_train)
上記のコードは、線形回帰モデルと 5 分割交差検証法を使用して、再帰的な特徴除去を実行し、最適な特徴サブセットを選択します。
4.L1 正則化
L1 正則化は、モデル化するための正則化項として L1 ノルムを使用する埋め込み手法です。パラメータを減らすためにペナルティが課されます。複雑さをモデル化し、有用な機能を選択します。 Scikit-Learn では、Lasso 回帰モデルを使用して L1 正則化を実装し、ゼロ以外の係数を持つ特徴を選択できます。例:
from sklearn.linear_model import Lasso # 创建Lasso回归模型对象 lasso = Lasso(alpha=0.1) # 训练Lasso模型并选择特征 lasso.fit(X_train, y_train) X_train_selected = lasso.transform(X_train)
上記のコードは、特徴の選択に Lasso 回帰モデルと正則化パラメーター alpha=0.1 を使用します。
Scikit-Learn は、フィルタリング方法、ラッピング方法、埋め込み方法など、多くの特徴選択方法を提供します。各方法には長所と短所があり、データセットの特性と問題のニーズに基づいて適切な方法を選択できます。実際には、特徴の選択は、モデルの複雑性の軽減、モデルの汎化能力の向上、トレーニング時間の短縮、モデルの解釈可能性の向上に役立ちます。
以上がScikit-Learn 機能の選択方法と手順の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









画像の注釈は、ラベルまたは説明情報を画像に関連付けて、画像の内容に深い意味と説明を与えるプロセスです。このプロセスは機械学習にとって重要であり、画像内の個々の要素をより正確に識別するために視覚モデルをトレーニングするのに役立ちます。画像に注釈を追加することで、コンピュータは画像の背後にあるセマンティクスとコンテキストを理解できるため、画像の内容を理解して分析する能力が向上します。画像アノテーションは、コンピュータ ビジョン、自然言語処理、グラフ ビジョン モデルなどの多くの分野をカバーする幅広い用途があり、車両が道路上の障害物を識別するのを支援したり、障害物の検出を支援したりするなど、幅広い用途があります。医用画像認識による病気の診断。この記事では主に、より優れたオープンソースおよび無料の画像注釈ツールをいくつか推奨します。 1.マケセンス

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

平たく言えば、機械学習モデルは、入力データを予測された出力にマッピングする数学関数です。より具体的には、機械学習モデルは、予測出力と真のラベルの間の誤差を最小限に抑えるために、トレーニング データから学習することによってモデル パラメーターを調整する数学関数です。機械学習には、ロジスティック回帰モデル、デシジョン ツリー モデル、サポート ベクター マシン モデルなど、多くのモデルがあります。各モデルには、適用可能なデータ タイプと問題タイプがあります。同時に、異なるモデル間には多くの共通点があったり、モデル進化の隠れた道が存在したりすることがあります。コネクショニストのパーセプトロンを例にとると、パーセプトロンの隠れ層の数を増やすことで、それをディープ ニューラル ネットワークに変換できます。パーセプトロンにカーネル関数を追加すると、SVM に変換できます。これです

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。
