目次
パターン認識はどのように機能するのでしょうか?
パターン認識の 2 つの状況
ホームページ テクノロジー周辺機器 AI 機械学習におけるパターン認識の概念を深く掘り下げる

機械学習におけるパターン認識の概念を深く掘り下げる

Jan 22, 2024 pm 11:57 PM
機械学習

機械学習におけるパターン認識の概念を深く掘り下げる

人間の脳にはパターン認識機能が備わっており、目にした情報と記憶内の情報を簡単に照合できます。機械学習におけるパターン認識は、共通の特徴を識別することによって、データベース内の情報と受信データを照合する技術です。

パターン認識はどのように機能するのでしょうか?

1. データ収集と前処理

パターン認識システムは、テキスト、ビデオ、オーディオなどのさまざまなタイプのデータを処理できます。そしてデータの前処理を実行します。このフェーズは重要であり、データの増強とシステム ノイズのフィルタリングに焦点を当てます。

2. データ表現

ニューラル ネットワークは、フィルタリングされたデータを分析して、意味のある情報を取得および発見します。これらの抽出された特徴は、パターンを構成するコンテンツに分割されます。

3. 意思決定

特定された固有のパターンと洞察は、ビジネス ユース ケースに基づくカテゴリ予測、クラスター予測のためにモデル l に供給されます。または値の予測。

パターン認識の 2 つの状況

パターン認識は、データ パターンの認識に重点を置く機械学習の一分野です。パターン認識は通常、分類または分類のタスクです。これらのカテゴリは、システムによって定義されるか、パターン間の類似性に基づいて学習されます。

探索的パターン認識

は、一般的なデータ パターンを識別することを目的としています。これらのアルゴリズムは、データ内の隠れたパターンや特徴のクラスターを見つけることに重点を置いています。これらは主に、入力パターンを未定義のクラスに割り当てる教師なし分類に依存しています。

記述的パターン認識

は、検出されたパターンを分類し、事前定義されたクラスの一部として識別することを目的としています。主に教師あり分類を使用します。

#パターン認識モデルの種類

パターン認識の主な方法は、一般的に使用されるさまざまなタイプのモデルを定義します:

統計的パターン認識

名前が示すように、このモデルは、履歴データ ポイントと統計的手法に依存して、データから特徴とパターンを学習します。これには、観察を収集し、それらを研究および分析して、新しいまだ見たことのない観察に適用できる一般的な規則や概念を推測することが含まれます。

パターンはその特性に従ってグループ化され、特性の数によってパターンが d 次元空間内の点としてどのように表示されるかが決まります。これは、パターンを識別するための次の単純なテクニックに従います。

は、n 次元ベクトル空間を通じて可能なオブジェクトを識別する関連した方法を表します。

一般化、ルール、および概念は、一連の例の特定の表現から導き出すことができ、したがって、目に見えないデータ ポイントに適用できます。

評価。システムのパフォーマンスを評価するためのモデルの精度と信頼性の推定。

構文パターン認識

潜在的な複雑さのため、構造情報または関係情報を含むパターンを特徴ベクトルに定量化することは困難です。この場合、統計的パターン認識だけでは十分ではありません。ただし、データは、データ パターンの構造的類似性に基づいて分類できます。このため、構文パターン認識技術は、パターンが複雑で特徴量が多い画像認識やシーン分析に適しています。

複雑なパターンをより単純な階層サブパターンに分解すると、画像内の道路、川、人物、またはテキスト内の構文と構文を識別するのに役立ちます。

ニューラル パターン認識

これは、処理できる複雑さのおかげで、パターンを検出するための最も一般的な手法です。

人工ニューラル ネットワークは、人間の脳が複雑な信号を処理する方法と同様の、ニューラル ネットワーク アーキテクチャに基づいてモデル化されたコンピューティング システムです。

#さまざまなデータ型のパターンを認識し、未知のデータを効率的に処理する方法を学習できます。

#テンプレート マッチング

テンプレート マッチングを使用したオブジェクト認識。このテクノロジーは、オブジェクトの特性を事前定義されたテンプレートと照合し、エージェントを通じてオブジェクトを識別します。通常、ロボット工学や車両追跡などの分野でのコンピューター ビジョンの物体検出で、テンプレートに一致する画像の小さな部分を見つけるために使用されます。

パターン認識の利点

1. パターン認識は、生体検出の問題や医療画像処理などの分類シナリオの解決に役立ちます。腫瘍細胞/非腫瘍細胞。

2. パターン認識は、物体検出、特に遠くにある隠れた物体、または入力データとは異なる角度で見える物体を識別するのに役立ちます。 AI モデルは、微妙な観察を行い、大量のデータ内の複数のパターンを関連付けることができます。これは、パターン認識の最も価値のあるアプリケーションの 1 つです。

3. パターン認識は、すべての特徴ベクトルとデータ パターンを要約することに優れており、これにより株価を予測し、正確な一般的な外挿予測を行うことができます。

パターン認識の課題

1. パターン認識には大量のデータが必要となることがよくあります。つまり、パターン分析用のニューラル ネットワークをトレーニングするには、大量のトレーニング データが必要になります。このような大量のデータを保存すると、パターン認識アプリケーションがさらに制限される可能性があります。

2. データ品質の問題。機械学習アルゴリズムのトレーニング データは、信頼できるソースから取得する必要があります。ニューラル ネットワーク固有のパターン認識および意思決定能力を妨げるバイアスやノイズがあってはなりません。

####3. トレーニング時間が長いです。特定されたパターンは分析が難しいだけでなく、データの収集、データの前処理、モデルのトレーニングに多大な時間を必要とします。

#パターン認識の応用例

1. 株式市場の予測

将来の株価の予測値は最も困難なミッションの 1 つです。当初は線形機械学習モデルと決定機械学習モデルが使用されていましたが、現在では深層学習モデルも使用されています。多くのトレーダーは、チャート パターンをディープ ラーニングや LSTM を含む他のパターン認識アルゴリズムと組み合わせて使用​​して、取引の意思決定や株式市場の予測を行っています。

2. ユーザー調査

それ自体がパターンである固有の特性を強調することによってデータを記述する方法としてのパターン認識。これは、利用可能なユーザー データを分析し、選択した機能ごとにセグメント化するために使用されます。

3. テキスト パターン認識

パターン認識は、単語、文法、テキストなどのテキストの構成要素を識別する方法です。彼らが従うパターン。これは文法チェック、機械翻訳、コンテンツ分類などに使用されます。

4. 顧客からのフィードバック

パターン認識システムは、顧客からのフィードバックや製品レビューから有益な情報を探します。これには、使用されたキーワード、顧客がどのように感じているか、何を望んでいるのかが含まれます。これは、競合他社や市場分析などにとって重要です。

5. 光学式文字認識 (OCR)

光学式文字認識 (OCR) テクノロジは、スキャンされたドキュメント、スクリーンショット、その他のデジタル画像を変換できます。編集可能および検索可能な電子ファイルに変換されます。 OCR を使用すると、手動でデータを入力する必要がなくなり、時間が節約され、効率が向上します。 OCR を実行するには、まずデジタル画像がセグメント化され、処理されて光学パターンが検出されます。これらのパターンは文字、数字、記号などに分類されます。

6. チャットボット

各チャットボットは、文の固有のパターンに基づいてテキストを分類し、作業に対する適切な応答を生成します。システムの管理者は、考えられるすべてのパターンを一連の考えられる応答にマッピングする責任があります。自然言語処理を核としたこの技術もパターン認識応用の優れた例です。

7. 画像認識

画像では、パターン認識を使用してエッジ、線、形状を見つけることができます。画像処理、コンピュータビジョンなどに適しています。

以上が機械学習におけるパターン認識の概念を深く掘り下げるの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

オープンソースの無料画像注釈ツールおすすめ 15 選 オープンソースの無料画像注釈ツールおすすめ 15 選 Mar 28, 2024 pm 01:21 PM

画像の注釈は、ラベルまたは説明情報を画像に関連付けて、画像の内容に深い意味と説明を与えるプロセスです。このプロセスは機械学習にとって重要であり、画像内の個々の要素をより正確に識別するために視覚モデルをトレーニングするのに役立ちます。画像に注釈を追加することで、コンピュータは画像の背後にあるセマンティクスとコンテキストを理解できるため、画像の内容を理解して分析する能力が向上します。画像アノテーションは、コンピュータ ビジョン、自然言語処理、グラフ ビジョン モデルなどの多くの分野をカバーする幅広い用途があり、車両が道路上の障害物を識別するのを支援したり、障害物の検出を支援したりするなど、幅広い用途があります。医用画像認識による病気の診断。この記事では主に、より優れたオープンソースおよび無料の画像注釈ツールをいくつか推奨します。 1.マケセンス

この記事では、SHAP: 機械学習のモデルの説明について説明します。 この記事では、SHAP: 機械学習のモデルの説明について説明します。 Jun 01, 2024 am 10:58 AM

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

透明!主要な機械学習モデルの原理を徹底的に分析! 透明!主要な機械学習モデルの原理を徹底的に分析! Apr 12, 2024 pm 05:55 PM

平たく言えば、機械学習モデルは、入力データを予測された出力にマッピングする数学関数です。より具体的には、機械学習モデルは、予測出力と真のラベルの間の誤差を最小限に抑えるために、トレーニング データから学習することによってモデル パラメーターを調整する数学関数です。機械学習には、ロジスティック回帰モデル、デシジョン ツリー モデル、サポート ベクター マシン モデルなど、多くのモデルがあります。各モデルには、適用可能なデータ タイプと問題タイプがあります。同時に、異なるモデル間には多くの共通点があったり、モデル進化の隠れた道が存在したりすることがあります。コネクショニストのパーセプトロンを例にとると、パーセプトロンの隠れ層の数を増やすことで、それをディープ ニューラル ネットワークに変換できます。パーセプトロンにカーネル関数を追加すると、SVM に変換できます。これです

学習曲線を通じて過学習と過小学習を特定する 学習曲線を通じて過学習と過小学習を特定する Apr 29, 2024 pm 06:50 PM

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

宇宙探査と人類居住工学における人工知能の進化 宇宙探査と人類居住工学における人工知能の進化 Apr 29, 2024 pm 03:25 PM

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 Jun 03, 2024 pm 01:25 PM

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

説明可能な AI: 複雑な AI/ML モデルの説明 説明可能な AI: 複雑な AI/ML モデルの説明 Jun 03, 2024 pm 10:08 PM

翻訳者 | Li Rui によるレビュー | 今日、人工知能 (AI) および機械学習 (ML) モデルはますます複雑になっており、これらのモデルによって生成される出力はブラックボックスになっており、関係者に説明することができません。 Explainable AI (XAI) は、利害関係者がこれらのモデルがどのように機能するかを理解できるようにし、これらのモデルが実際に意思決定を行う方法を確実に理解できるようにし、AI システムの透明性、信頼性、およびこの問題を解決するための説明責任を確保することで、この問題を解決することを目指しています。この記事では、さまざまな説明可能な人工知能 (XAI) 手法を検討して、その基礎となる原理を説明します。説明可能な AI が重要であるいくつかの理由 信頼と透明性: AI システムが広く受け入れられ、信頼されるためには、ユーザーは意思決定がどのように行われるかを理解する必要があります

あなたが知らない機械学習の 5 つの流派 あなたが知らない機械学習の 5 つの流派 Jun 05, 2024 pm 08:51 PM

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

See all articles