物理情報によって駆動されるニューラル ネットワークの概要
物理情報ベースのニューラル ネットワーク (PINN) は、物理モデルとニューラル ネットワークを組み合わせた手法です。物理的手法をニューラル ネットワークに統合することにより、PINN は非線形システムの動的な動作を学習できます。従来の物理モデルベースの方法と比較して、PINN は高い柔軟性と拡張性を備えています。物理仕様の要件を満たしながら、複雑な非線形動的システムを適応的に学習できます。この記事では、PINN の基本原理を紹介し、実際の応用例をいくつか紹介します。
PINN の基本原理は、物理的手法をニューラル ネットワークに統合して、システムの動的な動作を学習することです。具体的には、物理的手法は次の形式で表現できます。
F(u(x),\frac{\partial u}{\partial x},x,t) = 0
私たちの目標は、システム状態変化 u(x) の時間発展とシステム周囲の境界条件を学習することで、システムの動作を理解することです。この目標を達成するには、ニューラル ネットワークを使用して状態変化 u(x) の進行をシミュレートし、自動微分技術を使用して状態変化の勾配を計算します。同時に、物理的手法を使用して、ニューラル ネットワークと状態変化の間の関係を制約することもできます。このようにして、システムの状態の進化をより深く理解し、将来の変化を予測することができます。
具体的には、次の損失関数を使用して PINN をトレーニングできます:
L_{pinn}=L_{data} L_{ Physics}
ここで、L_{data} はデータ損失であり、既知の状態変化値をシミュレートするために使用されます。一般に、平均二乗誤差を使用して L_{data} を明確に定義できます:
L_{data}=\frac{1}{N}\sum_{i=1}^ { N}(u_i-u_{data,i})^2
$N$ はデータセット内のサンプル数、u_i は、ニューラル ネットワーク、u_{data ,i} は、データ セット内の対応する実際の状態変化値です。
L_{physics} は物理的制約損失であり、ニューラル ネットワークと状態変化が物理的手法を確実に満たすために使用されます。一般に、残差の数を使用して L_{physics} を明確に定義できます:
L_{physics}=\frac{1}{N}\sum_{i=1} ^{ N}(F(u_i,\frac{\partial u_i}{\partial x},x_i,t_i))^2
ここで、F は物理的な方法、\frac {\partial u_i}{\partial x} はニューラル ネットワークによって予測される状態変化の傾き、x_i と t_i はこの i と同様の時空間座標です。
L_{pinn} を最小化することで、データのシミュレーションと物理的手法の満足を同時に行うことができ、それによってシステムの動的挙動を学習できます。
次に、実際の PINN のデモを見てみましょう。典型的な例の 1 つは、Navier-Stokes 法の動的動作を学習することです。 Navier-Stokes 法は流体の運動挙動を記述し、次の形式で記述できます:
\rho(\frac{\partial u}{\partial t} u \cdot\nabla u)=-\nabla p \mu\nabla^2u f
ここで、\rho は流体の密度、u は流体の速度、p は流体の速度です。流体の圧力、\mu は密度、f は外力です。私たちの目標は、流体の速度と圧力の時間変化、および流体境界における境界条件を学習することです。
この目標を達成するには、ナビエ・ストークス法をニューラル ネットワークに埋め込んで、速度と圧力の時間発展の学習を促進します。具体的には、次の損失を使用して PINN をトレーニングできます:
L_{pinn}=L_{data} L_{physics}
L_{data} と L_{physics} の定義は以前と同じです。流体力学モデルを使用して、速度や圧力を含む一連の状態変数データを生成し、PINN を使用して状態変化をシミュレートし、ナビエ・ストークス法を満たすことができます。このようにして、最初に複雑な物理モデルを決定したり、手動で解析を導き出したりすることなく、湿った流れ、渦、境界層などの現象を含む流動体の動的挙動を学習できます。
もう 1 つの例は、非線形波動メソッドを学習する際の運動学的挙動です。非線形波動法は、序文で波動の伝播挙動を説明しており、次の形式で記述できます:
\frac{\partial^2u}{\partial t^ 2} -c^2\nabla^2u f(u)=0
ここで、u は波の速度の振幅、c は波の速度、f(u) は非線形品質のアイテム。私たちの目標は、導入境界における波のダイナミクスと境界条件の時間発展を学ぶことです。
この目標を達成するには、非線形波動プロセスをニューラル ネットワークに組み込んで、波動の画期的な進化の学習を促進します。具体的には、次のダメージ数値を使用して PINN をトレーニングできます:
L_{pinn}=L_{data} L_{physics}
## L_{data} と L_{physics} の定義は以前と同じです。数値的手法を使用して振幅とステップを含む一連の状態変化データを生成し、次に PINN を使用して状態変化をシミュレートし、非線形波動法を満たすことができます。このようにして、最初に複雑な物理モデルを定義したり、手動で解析を導き出したりすることなく、形状変化、波束の屈折、反射などの現象を含む、媒質内の波の時間発展を研究できます。
つまり、物理情報に基づくニューラル ネットワークは、物理法則を厳密に満たしながら、複雑な非線形動的システムの地球の学習に適応できる、物理モデルとニューラル ネットワークを組み合わせた方法です。 PINN は流体力学、音響学、構造力学などの分野で広く使用されており、いくつかの顕著な成果を上げています。将来的には、ニューラル ネットワークと自動微分技術の継続的な開発により、PINN がさまざまな非線形力学問題を解決するための、より大きく、より強力で、より汎用性の高いツールになることが期待されます。
以上が物理情報によって駆動されるニューラル ネットワークの概要の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











双方向 LSTM モデルは、テキスト分類に使用されるニューラル ネットワークです。以下は、テキスト分類タスクに双方向 LSTM を使用する方法を示す簡単な例です。まず、必要なライブラリとモジュールをインポートする必要があります: importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Em

時系列データでは、観測間に依存関係があるため、相互に独立していません。ただし、従来のニューラル ネットワークは各観測値を独立したものとして扱うため、時系列データをモデル化するモデルの能力が制限されます。この問題を解決するために、リカレント ニューラル ネットワーク (RNN) が導入されました。これは、ネットワーク内のデータ ポイント間の依存関係を確立することにより、時系列データの動的特性をキャプチャするためのメモリの概念を導入しました。反復接続を通じて、RNN は以前の情報を現在の観測値に渡して、将来の値をより適切に予測できます。このため、RNN は時系列データを含むタスクにとって強力なツールになります。しかし、RNN はどのようにしてこの種の記憶を実現するのでしょうか? RNN は、ニューラル ネットワーク内のフィードバック ループを通じて記憶を実現します。これが RNN と従来のニューラル ネットワークの違いです。

FLOPS はコンピュータの性能評価の規格の 1 つで、1 秒あたりの浮動小数点演算の回数を測定するために使用されます。ニューラル ネットワークでは、モデルの計算の複雑さとコンピューティング リソースの使用率を評価するために FLOPS がよく使用されます。これは、コンピューターの計算能力と効率を測定するために使用される重要な指標です。ニューラル ネットワークは、データ分類、回帰、クラスタリングなどのタスクを実行するために使用される、複数のニューロン層で構成される複雑なモデルです。ニューラル ネットワークのトレーニングと推論には、多数の行列の乗算、畳み込み、その他の計算操作が必要となるため、計算の複雑さは非常に高くなります。 FLOPS (FloatingPointOperationsperSecond) を使用すると、ニューラル ネットワークの計算の複雑さを測定し、モデルの計算リソースの使用効率を評価できます。フロップ

SqueezeNet は、高精度と低複雑性のバランスが取れた小型で正確なアルゴリズムであり、リソースが限られているモバイル システムや組み込みシステムに最適です。 2016 年、DeepScale、カリフォルニア大学バークレー校、スタンフォード大学の研究者は、コンパクトで効率的な畳み込みニューラル ネットワーク (CNN) である SqueezeNet を提案しました。近年、研究者は SqueezeNetv1.1 や SqueezeNetv2.0 など、SqueezeNet にいくつかの改良を加えました。両方のバージョンの改良により、精度が向上するだけでなく、計算コストも削減されます。 ImageNet データセット上の SqueezeNetv1.1 の精度

拡張畳み込みと拡張畳み込みは、畳み込みニューラル ネットワークでよく使用される演算です。この記事では、それらの違いと関係について詳しく紹介します。 1. 拡張畳み込み 拡張畳み込みは、拡張畳み込みまたは拡張畳み込みとも呼ばれる、畳み込みニューラル ネットワークの演算です。これは、従来の畳み込み演算に基づいた拡張であり、畳み込みカーネルに穴を挿入することで畳み込みカーネルの受容野を増加させます。これにより、ネットワークはより広範囲の機能をより適切に捕捉できるようになります。拡張コンボリューションは画像処理の分野で広く使用されており、パラメータの数や計算量を増やすことなくネットワークのパフォーマンスを向上させることができます。コンボリューション カーネルの受容野を拡張することにより、拡張コンボリューションは画像内のグローバル情報をより適切に処理できるようになり、それによって特徴抽出の効果が向上します。拡張畳み込みの主なアイデアは、いくつかの要素を導入することです。

畳み込みニューラル ネットワークは、画像のノイズ除去タスクで優れたパフォーマンスを発揮します。学習したフィルターを利用してノイズを除去し、元の画像を復元します。この記事では、畳み込みニューラル ネットワークに基づく画像ノイズ除去方法を詳しく紹介します。 1. 畳み込みニューラル ネットワークの概要 畳み込みニューラル ネットワークは、複数の畳み込み層、プーリング層、全結合層の組み合わせを使用して画像の特徴を学習および分類する深層学習アルゴリズムです。畳み込み層では、畳み込み演算を通じて画像の局所的な特徴が抽出され、それによって画像内の空間相関が捕捉されます。プーリング層は、特徴の次元を削減することで計算量を削減し、主要な特徴を保持します。完全に接続された層は、学習した特徴とラベルをマッピングして画像分類やその他のタスクを実装する役割を果たします。このネットワーク構造の設計により、畳み込みニューラル ネットワークは画像処理と認識に役立ちます。

ファジー ニューラル ネットワークは、ファジー ロジックとニューラル ネットワークを組み合わせたハイブリッド モデルで、従来のニューラル ネットワークでは処理が困難なファジーまたは不確実な問題を解決します。その設計は人間の認知における曖昧さと不確実性にインスピレーションを得ているため、制御システム、パターン認識、データマイニングなどの分野で広く使用されています。ファジー ニューラル ネットワークの基本アーキテクチャは、ファジー サブシステムとニューラル サブシステムで構成されます。ファジー サブシステムは、ファジー ロジックを使用して入力データを処理し、それをファジー セットに変換して、入力データの曖昧さと不確実性を表現します。ニューラル サブシステムは、ニューラル ネットワークを使用して、分類、回帰、クラスタリングなどのタスクのファジー セットを処理します。ファジー サブシステムとニューラル サブシステム間の相互作用により、ファジー ニューラル ネットワークはより強力な処理能力を持ち、

シャム ニューラル ネットワークは、ユニークな人工ニューラル ネットワーク構造です。これは、同じパラメーターと重みを共有する 2 つの同一のニューラル ネットワークで構成されます。同時に、2 つのネットワークは同じ入力データも共有します。 2 つのニューラル ネットワークは構造的に同一であるため、このデザインは双子からインスピレーションを得ています。シャム ニューラル ネットワークの原理は、2 つの入力データ間の類似性や距離を比較することによって、画像マッチング、テキスト マッチング、顔認識などの特定のタスクを完了することです。トレーニング中、ネットワークは、類似したデータを隣接する領域にマッピングし、異なるデータを離れた領域にマッピングしようとします。このようにして、ネットワークはさまざまなデータを分類または照合する方法を学習して、対応するデータを実現できます。
