Transformer の位置エンコーディングの概要とその改善方法
Transformer は、自然言語処理タスクで広く使用されている深層学習モデルです。自己注意メカニズムを使用してシーケンス内の単語間の関係をキャプチャしますが、シーケンス内の単語の位置順序は無視されるため、情報の損失につながる可能性があります。この問題を解決するために、Transformer では位置エンコーディングが導入されています。 位置エンコーディングの基本原理は、シーケンス内の各単語に、シーケンス内の単語の位置に関する情報を含む位置ベクトルを割り当てることです。このように、モデルは、位置ベクトルを単語埋め込みベクトルに追加することで、単語の位置情報を考慮に入れることができます。 位置エンコードの一般的な方法は、サイン関数とコサイン関数を使用して位置ベクトルを生成することです。具体的には、各位置および各次元について、位置ベクトルの値はサイン関数とコサイン関数で構成されます。このエンコード方法により、モデルは異なる位置間の関係を学習できます。 従来の位置符号化方法に加えて、いくつかの改良された方法が提案されている。たとえば、位置ベクトルがニューラル ネットワークを通じて学習される学習位置エンコーディングを使用できます。この方法では、トレーニング プロセス中に位置ベクトルを適応的に調整して、シーケンス内の位置情報をより適切に取得できます。 つまり、Transformer モデルは位置エンコーディングを使用して単語の順序を考慮します
1. 基本原則
Transformer では、位置エンコーディングは次のとおりです。位置情報をベクトルにエンコードして変換します。これに単語の埋め込みベクトルが追加されて、各単語の最終表現が得られます。具体的な計算方法は次のとおりです。
PE_{(i,2j)}=sin(\frac{i}{10000^{2j/d_{model}}})
PE_{(i,2j 1)}=cos(\frac{i}{10000^{2j/d_{モデル}}})
このうち、i は単語の位置、j は位置エンコーディング ベクトルの次元、d_{model} は Transformer モデルの次元です。この式を使用すると、各位置および各次元の位置エンコード値を計算できます。これらの値を位置エンコード行列に結合し、それを単語埋め込み行列に追加して、各単語の位置エンコード表現を取得できます。
2. 改善方法
Transformer の位置エンコーディングは多くのタスクで適切に機能しますが、使用できる改善点がまだいくつかあります。
1. 位置エンコーディングの学習
従来の Transformer モデルでは、位置エンコーディングは固定式に基づいて計算されるため、さまざまな状況に適応できません。さまざまなデータセットのタスクと特定のニーズ。したがって、研究者は位置エンコーディングを学習するためのいくつかの方法を提案しました。 1 つのアプローチは、ニューラル ネットワークを使用して位置エンコーディングを学習することです。具体的には、研究者はオートエンコーダまたは畳み込みニューラル ネットワークを使用して位置エンコーディングを学習し、位置エンコーディングをタスクとデータセットの特定のニーズに適合させることができます。この方法の利点は、位置エンコーディングを適応的に調整できるため、モデルの汎化能力が向上することです。
2. ランダム位置エンコーディング
もう 1 つの改善方法は、ランダム位置エンコーディングを使用することです。この方法は、位置エンコード ベクトルのセットをランダムにサンプリングすることにより、固定位置エンコード式を置き換えます。この方法の利点は、モデルの多様性を高め、それによってモデルの堅牢性と汎化能力を向上できることです。ただし、ランダム位置エンコーディングはトレーニング時間ごとにランダムに生成されるため、より多くのトレーニング時間が必要になります。
3. マルチスケール位置エンコーディング
マルチスケール位置エンコーディングは、複数の位置エンコーディング行列を組み合わせて位置を改善する手法です。 。具体的には、研究者らは、より豊富な位置エンコード表現を取得するために、さまざまなスケールで位置エンコード行列を追加しました。この方法の利点は、さまざまなスケールで位置情報を取得できるため、モデルのパフォーマンスが向上することです。
4. ローカル位置エンコーディング
ローカル位置エンコーディングは、位置エンコーディングをローカル領域に限定することで位置エンコーディングを改善する方法です。具体的には、研究者らは位置エンコーディングの計算を現在の単語の周囲の特定の範囲に限定し、それによって位置エンコーディングの複雑さを軽減しました。このアプローチの利点は、モデルのパフォーマンスを向上させながら、計算コストを削減できることです。
つまり、Transformer 位置エンコーディングは、モデルがシーケンス内の単語間の位置情報をキャプチャするのに役立ち、それによってモデルのパフォーマンスを向上させることができる重要な技術です。従来の位置エンコーディングは多くのタスクで良好に実行されますが、使用できる改善点がいくつかあります。これらの改善方法は、タスクとデータセットのニーズに応じて選択して組み合わせることができ、それによってモデルのパフォーマンスが向上します。
以上がTransformer の位置エンコーディングの概要とその改善方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









BERT は、2018 年に Google によって提案された事前トレーニング済みの深層学習言語モデルです。正式名は BidirectionEncoderRepresentationsfromTransformers で、Transformer アーキテクチャに基づいており、双方向エンコードの特性を備えています。従来の一方向コーディング モデルと比較して、BERT はテキストを処理するときにコンテキスト情報を同時に考慮できるため、自然言語処理タスクで優れたパフォーマンスを発揮します。その双方向性により、BERT は文内の意味関係をより深く理解できるようになり、それによってモデルの表現能力が向上します。事前トレーニングおよび微調整方法を通じて、BERT は感情分析、命名などのさまざまな自然言語処理タスクに使用できます。

活性化関数は深層学習において重要な役割を果たしており、ニューラル ネットワークに非線形特性を導入することで、ネットワークが複雑な入出力関係をより適切に学習し、シミュレートできるようになります。活性化関数の正しい選択と使用は、ニューラル ネットワークのパフォーマンスとトレーニング結果に重要な影響を与えます。この記事では、よく使用される 4 つの活性化関数 (Sigmoid、Tanh、ReLU、Softmax) について、導入、使用シナリオ、利点、欠点と最適化ソリューション アクティベーション関数を包括的に理解できるように、次元について説明します。 1. シグモイド関数 シグモイド関数の公式の概要: シグモイド関数は、任意の実数を 0 と 1 の間にマッピングできる一般的に使用される非線形関数です。通常は統一するために使用されます。

以前に書きましたが、今日は、深層学習テクノロジーが複雑な環境におけるビジョンベースの SLAM (同時ローカリゼーションとマッピング) のパフォーマンスをどのように向上させることができるかについて説明します。ここでは、深部特徴抽出と深度マッチング手法を組み合わせることで、低照度条件、動的照明、テクスチャの弱い領域、激しいセックスなどの困難なシナリオでの適応を改善するように設計された多用途のハイブリッド ビジュアル SLAM システムを紹介します。当社のシステムは、拡張単眼、ステレオ、単眼慣性、ステレオ慣性構成を含む複数のモードをサポートしています。さらに、他の研究にインスピレーションを与えるために、ビジュアル SLAM と深層学習手法を組み合わせる方法も分析します。公開データセットと自己サンプリングデータに関する広範な実験を通じて、測位精度と追跡堅牢性の点で SL-SLAM の優位性を実証しました。

潜在空間埋め込み (LatentSpaceEmbedding) は、高次元データを低次元空間にマッピングするプロセスです。機械学習と深層学習の分野では、潜在空間埋め込みは通常、高次元の入力データを低次元のベクトル表現のセットにマッピングするニューラル ネットワーク モデルです。このベクトルのセットは、「潜在ベクトル」または「潜在ベクトル」と呼ばれることがよくあります。エンコーディング」。潜在空間埋め込みの目的は、データ内の重要な特徴をキャプチャし、それらをより簡潔でわかりやすい形式で表現することです。潜在空間埋め込みを通じて、低次元空間でデータの視覚化、分類、クラスタリングなどの操作を実行し、データをよりよく理解して活用できます。潜在空間埋め込みは、画像生成、特徴抽出、次元削減など、多くの分野で幅広い用途があります。潜在空間埋め込みがメイン

今日の急速な技術変化の波の中で、人工知能 (AI)、機械学習 (ML)、および深層学習 (DL) は輝かしい星のようなもので、情報技術の新しい波をリードしています。これら 3 つの単語は、さまざまな最先端の議論や実践で頻繁に登場しますが、この分野に慣れていない多くの探検家にとって、その具体的な意味や内部のつながりはまだ謎に包まれているかもしれません。そこで、まずはこの写真を見てみましょう。ディープラーニング、機械学習、人工知能の間には密接な相関関係があり、進歩的な関係があることがわかります。ディープラーニングは機械学習の特定の分野であり、機械学習

1. はじめに ベクトル検索は、最新の検索および推奨システムの中核コンポーネントとなっています。テキスト、画像、音声などの複雑なオブジェクトを数値ベクトルに変換し、多次元空間で類似性検索を実行することにより、効率的なクエリ マッチングとレコメンデーションが可能になります。基本から実践まで、Elasticsearch の開発の歴史を確認します。この記事では、各段階の特徴と進歩に焦点を当てて、Elasticsearch ベクトル検索の開発の歴史を振り返ります。歴史をガイドとして考慮すると、Elasticsearch ベクトル検索の全範囲を確立するのは誰にとっても便利です。

2006 年にディープ ラーニングの概念が提案されてから、ほぼ 20 年が経過しました。ディープ ラーニングは、人工知能分野における革命として、多くの影響力のあるアルゴリズムを生み出してきました。では、ディープラーニングのトップ 10 アルゴリズムは何だと思いますか?私の考えでは、ディープ ラーニングのトップ アルゴリズムは次のとおりで、いずれもイノベーション、アプリケーションの価値、影響力の点で重要な位置を占めています。 1. ディープ ニューラル ネットワーク (DNN) の背景: ディープ ニューラル ネットワーク (DNN) は、多層パーセプトロンとも呼ばれ、最も一般的なディープ ラーニング アルゴリズムです。最初に発明されたときは、コンピューティング能力のボトルネックのため疑問視されていました。最近まで長年にわたる計算能力、データの爆発的な増加によって画期的な進歩がもたらされました。 DNN は、複数の隠れ層を含むニューラル ネットワーク モデルです。このモデルでは、各層が入力を次の層に渡し、

エディター | Radish Skin 2021 年の強力な AlphaFold2 のリリース以来、科学者はタンパク質構造予測モデルを使用して、細胞内のさまざまなタンパク質構造をマッピングし、薬剤を発見し、既知のあらゆるタンパク質相互作用の「宇宙地図」を描いてきました。ちょうど今、Google DeepMind が AlphaFold3 モデルをリリースしました。このモデルは、タンパク質、核酸、小分子、イオン、修飾残基を含む複合体の結合構造予測を実行できます。 AlphaFold3 の精度は、これまでの多くの専用ツール (タンパク質-リガンド相互作用、タンパク質-核酸相互作用、抗体-抗原予測) と比較して大幅に向上しました。これは、単一の統合された深層学習フレームワーク内で、次のことを達成できることを示しています。
