ホームページ バックエンド開発 Python チュートリアル Pandas データ フィルタリングの高度なテクニックと実用的なアプリケーション

Pandas データ フィルタリングの高度なテクニックと実用的なアプリケーション

Jan 24, 2024 am 08:28 AM

Pandas データ フィルタリングの高度なテクニックと実用的なアプリケーション

Pandas は強力なデータ処理および分析ツールであり、データを簡単にフィルタリングおよび処理するための多くの柔軟な機能と方法を提供します。この記事では、Pandas データ フィルタリングの高度なテクニックをいくつか紹介し、実際のケースを通じて具体的なコード例を示します。

1. 基本的なデータ フィルタリング

Pandas は、ブール インデックス、loc または iloc メソッドなどの使用など、データの基本的なフィルタリングを実行するためのさまざまなメソッドを提供します。ここでは、一般的な基本的なデータ フィルタリングのケースをいくつか示します。

  1. ブール インデックス フィルタリング

ブール インデックスは、特定の条件に基づいてデータをフィルタリングするために使用できます。たとえば、学生の情報を含むデータ フレームがあり、スコアが 60 点を超える学生をフィルタリングして除外したいとします。これは、次のコードを使用して実現できます。

import pandas as pd

data = {
    '姓名': ['张三', '李四', '王五', '赵六'],
    '成绩': [80, 70, 90, 50]
}

df = pd.DataFrame(data)
df_filtered = df[df['成绩'] > 60]

print(df_filtered)
ログイン後にコピー
  1. loc メソッドのフィルタリング

loc メソッドは、行ラベルと列ラベルに基づいてデータをフィルタリングできます。たとえば、学生情報を含むデータ フレームがあり、Zhang San と Li Si という名前の学生の学年と年齢をフィルタリングして除外したいとします。これを実現するには、次のコードを使用できます:

import pandas as pd

data = {
    '姓名': ['张三', '李四', '王五', '赵六'],
    '成绩': [80, 70, 90, 50],
    '年龄': [18, 19, 20, 21]
}

df = pd.DataFrame(data)
df_filtered = df.loc[df['姓名'].isin(['张三', '李四']), ['成绩', '年龄']]

print(df_filtered)
ログイン後にコピー

2. 高度なデータ フィルタリング

基本的なデータ フィルタリング方法に加えて、Pandas は、クエリの使用など、多くの高度なデータ フィルタリング手法も提供します。 MultiIndex は、マルチレベルのフィルタリングなどを実行します。以下にいくつかの事例を示します。

  1. クエリ メソッドのフィルタリング

クエリ メソッドは、SQL に似た構文を使用してデータをフィルタリングできます。たとえば、学生の情報を含むデータ フレームがあり、スコアが 60 を超え、18 歳から 20 歳までの学生をフィルタリングして除外したいとします。これを実現するには、次のコードを使用します。

import pandas as pd

data = {
    '姓名': ['张三', '李四', '王五', '赵六'],
    '成绩': [80, 70, 90, 50],
    '年龄': [18, 19, 20, 21]
}

df = pd.DataFrame(data)
df_filtered = df.query('成绩 > 60 and 18 <= 年龄 <= 20')

print(df_filtered)
ログイン後にコピー
  1. MultiIndex を使用してフィルタリングする

データ フレームに複数のレベルのインデックスがある場合は、MultiIndex オブジェクトを使用して、マルチレベルフィルタリング。たとえば、学生の情報を含むデータ フレームがあります。インデックスにはクラスと学生番号の 2 つのレベルが含まれています。クラス 1 の学生番号 001 と 002 の学生をフィルタリングして除外したいとします。これは、次のコードを使用して実現できます。

import pandas as pd

data = {
    '姓名': ['张三', '李四', '王五', '赵六'],
    '成绩': [80, 70, 90, 50],
}

index = pd.MultiIndex.from_tuples([('1班', '001'), ('1班', '002'), ('2班', '001'), ('2班', '002')])
df = pd.DataFrame(data, index=index)
df_filtered = df.loc[('1班', ['001', '002']), :]

print(df_filtered)
ログイン後にコピー

3. ケース分析

次に、Pandas データ フィルタリングの高度なテクニックをさらに説明するために、実際のデータ セットを例として取り上げます。自動車のブランド、モデル、販売台数、販売量などの情報を含む自動車販売データ セットがあるとします。販売台数が 1,000 台を超え、販売台数が 100 万台を超えるモデルをフィルタリングしたいと考えています。以下はコード例です。

import pandas as pd

data = {
    '品牌': ['宝马', '奥迪', '奔驰', '大众'],
    '型号': ['X3', 'A6', 'E级', '朗逸'],
    '销售量': [1200, 800, 1500, 900],
    '销售额': [1200, 900, 1800, 800]
}

df = pd.DataFrame(data)
df_filtered = df.query('销售量 > 1000 and 销售额 > 1000000')

print(df_filtered)
ログイン後にコピー

上記のコードにより、販売台数が 1,000 台を超え、売上高が 100 万元を超えるモデルを選別することに成功しました。

要約すると、Pandas は、基本的なブール インデックス、loc および iloc メソッドから高度なクエリ メソッドや MultiIndex フィルタリングまで、さまざまなシナリオでのデータ フィルタリングのニーズを満たすことができる豊富なデータ フィルタリング関数とメソッドを提供します。上記のケースは、いくつかの一般的なデータ フィルタリング手法とアプリケーションを示しており、実際のアプリケーションで読者に役立つことを願っています。

以上がPandas データ フィルタリングの高度なテクニックと実用的なアプリケーションの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

LinuxターミナルでPythonバージョンを表示するときに発生する権限の問題を解決する方法は? LinuxターミナルでPythonバージョンを表示するときに発生する権限の問題を解決する方法は? Apr 01, 2025 pm 05:09 PM

LinuxターミナルでPythonバージョンを表示する際の許可の問題の解決策PythonターミナルでPythonバージョンを表示しようとするとき、Pythonを入力してください...

あるデータフレームの列全体を、Python内の異なる構造を持つ別のデータフレームに効率的にコピーする方法は? あるデータフレームの列全体を、Python内の異なる構造を持つ別のデータフレームに効率的にコピーする方法は? Apr 01, 2025 pm 11:15 PM

PythonのPandasライブラリを使用する場合、異なる構造を持つ2つのデータフレーム間で列全体をコピーする方法は一般的な問題です。 2つのデータがあるとします...

プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は? プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は? Apr 02, 2025 am 07:18 AM

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか? 中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか? Apr 02, 2025 am 07:15 AM

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

正規表現とは何ですか? 正規表現とは何ですか? Mar 20, 2025 pm 06:25 PM

正規表現は、プログラミングにおけるパターンマッチングとテキスト操作のための強力なツールであり、さまざまなアプリケーションにわたるテキスト処理の効率を高めます。

uvicornは、serving_forever()なしでhttpリクエストをどのように継続的に聞いていますか? uvicornは、serving_forever()なしでhttpリクエストをどのように継続的に聞いていますか? Apr 01, 2025 pm 10:51 PM

UvicornはどのようにしてHTTPリクエストを継続的に聞きますか? Uvicornは、ASGIに基づく軽量のWebサーバーです。そのコア機能の1つは、HTTPリクエストを聞いて続行することです...

文字列を介してオブジェクトを動的に作成し、Pythonでメソッドを呼び出す方法は? 文字列を介してオブジェクトを動的に作成し、Pythonでメソッドを呼び出す方法は? Apr 01, 2025 pm 11:18 PM

Pythonでは、文字列を介してオブジェクトを動的に作成し、そのメソッドを呼び出す方法は?これは一般的なプログラミング要件です。特に構成または実行する必要がある場合は...

人気のあるPythonライブラリとその用途は何ですか? 人気のあるPythonライブラリとその用途は何ですか? Mar 21, 2025 pm 06:46 PM

この記事では、numpy、pandas、matplotlib、scikit-learn、tensorflow、django、flask、and requestsなどの人気のあるPythonライブラリについて説明し、科学的コンピューティング、データ分析、視覚化、機械学習、Web開発、Hの使用について説明します。

See all articles