勾配ブースティング ツリー アルゴリズムの基本原理
勾配ブースティング ツリーは、デシジョン ツリー モデルを反復的にトレーニングし、複数のデシジョン ツリー モデルに重みを付けて融合して、より強力な分類または回帰モデルを構築するアンサンブル学習アルゴリズムです。このアルゴリズムは加算モデルに基づいており、新しい決定木モデルはそれぞれ、以前のモデルの残差を最小限に抑えるように設計されています。最終モデルの予測結果は、すべての決定木モデルの加重平均です。勾配ブースト ツリーは、精度と堅牢性が高いため広く使用されています。
具体的には、勾配ブースト ツリーの原理は次のとおりです。
まず、勾配ブースト ツリーの原理は次のとおりです。 、トレーニング データ セットはトレーニング セットと検証セットに分かれています。トレーニング セットを使用して、基本デシジョン ツリー モデルを初期モデルとしてトレーニングします。
まず、トレーニング セットの残差、つまり真の値と予測値の差を計算します。次に、残差を新しいターゲット変数として使用して、その上で新しいデシジョン ツリー モデルをトレーニングします。最後に、新しいモデルが初期モデルと重み付けされて融合されます。
まず、初期モデルと新しいモデルの予測結果の重み付け融合を実行して、新しい予測結果を取得します。次に、新しい予測と真の値の間の残差を計算し、その残差を新しいターゲット変数として使用します。次に、この新しいターゲット変数を使用して新しいデシジョン ツリー モデルをトレーニングし、前のモデルと重み付けされた融合を実行します。このようにして、予測モデルを継続的かつ反復的に改善して、より正確な予測結果を得ることができます。
4. 所定の反復回数に達するか、検証セットでのモデルのパフォーマンスが低下し始めるまで、上記の手順を繰り返します。
5. 最後に、複数の決定木モデルの予測結果が重み付けされて融合され、最終的な予測結果が得られます。
勾配ブースティング ツリーでは、新しいデシジョン ツリー モデルはそれぞれ以前のモデルに基づいてトレーニングされるため、新しいモデルはそれぞれ以前のモデルの誤差を修正します。このようにして、複数の反復を通じて、勾配ブースティング ツリーはモデルのパフォーマンスを継続的に向上させることができ、それによってより良い分類または回帰結果が得られます。
特定の実装では、勾配ブースティング ツリーは通常、勾配降下法を使用してモデル パラメーターを最適化します。具体的には、損失関数の負の勾配を計算することによってモデルのパラメーターを更新し、それによって損失関数を最小化することができます。分類問題では、通常、クロスエントロピー損失関数が使用され、回帰問題では、通常、二乗損失関数が使用されます。
勾配ブースティング ツリーの利点は、データの過剰な前処理を必要とせず、欠損値や離散特徴を直接処理できることです。ただし、反復ごとに新しいデシジョン ツリー モデルをトレーニングする必要があるため、勾配ブースト ツリーのトレーニング速度は遅くなります。また、反復回数が多すぎたり、決定木が深すぎたりするとモデルが過学習してしまうため、一定の正則化処理が必要となります。
勾配ブースティング ツリーが早期に停止するかどうか?
勾配ブースティング ツリーでは、早期に停止することで過学習を回避し、モデルの汎化能力を向上させることができます。一般に、相互検証などの方法を通じて、早期に停止するための最適なラウンド数を決定できます。
具体的には、トレーニング データをフィッティングする際にテスト セットでのモデルのパフォーマンスが低下し始めていることが判明した場合は、オーバーフィッティングを避けるためにトレーニングを停止できます。さらに、より深いツリーを使用したり、より大きな学習率を使用したりすると、モデルが過学習になる可能性があり、この場合、早期に停止することによって一定の利点が得られます。
つまり、早期停止は勾配ブースティング ツリーにおける一般的な正則化方法であり、これは過学習を回避し、モデルの汎化能力を向上させるのに役立ちます。
以上が勾配ブースティング ツリー アルゴリズムの基本原理の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究

8月1日の本サイトのニュースによると、SKハイニックスは本日(8月1日)ブログ投稿を発表し、8月6日から8日まで米国カリフォルニア州サンタクララで開催されるグローバル半導体メモリサミットFMS2024に参加すると発表し、多くの新世代の製品。フューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) の紹介。以前は主に NAND サプライヤー向けのフラッシュ メモリ サミット (FlashMemorySummit) でしたが、人工知能技術への注目の高まりを背景に、今年はフューチャー メモリおよびストレージ サミット (FutureMemoryandStorage) に名前が変更されました。 DRAM およびストレージ ベンダー、さらに多くのプレーヤーを招待します。昨年発売された新製品SKハイニックス
