PyTorch を使用して畳み込みニューラル ネットワークを構築する基本手順
畳み込みニューラル ネットワーク (CNN) は、コンピューター ビジョン タスクで広く使用されている深層学習モデルです。完全に接続されたニューラル ネットワークと比較して、CNN はパラメーターが少なく、より強力な特徴抽出機能を備えており、画像分類、ターゲット検出、画像セグメンテーションなどのタスクで優れたパフォーマンスを発揮します。以下では、基本的な CNN モデルの構築方法を紹介します。
畳み込みニューラル ネットワーク (CNN) は、複数の畳み込み層、プーリング層、活性化関数、完全接続層を備えた深層学習モデルです。畳み込み層は CNN のコア コンポーネントであり、入力画像の特徴を抽出するために使用されます。プーリング層は、特徴マップのサイズを削減し、画像の主な特徴を維持できます。活性化関数は非線形変換を導入し、モデルの表現力を高めます。全結合層は、特徴マップを出力結果に変換します。これらのコンポーネントを組み合わせることで、基本的な畳み込みニューラル ネットワークを構築できます。 CNN は、画像分類、ターゲット検出、画像生成などのタスクで優れたパフォーマンスを発揮し、コンピューター ビジョンの分野で広く使用されています。
第二に、CNN の構造では、各畳み込み層とプーリング層のパラメーターを決定する必要があります。これらのパラメーターには、コンボリューション カーネルのサイズ、コンボリューション カーネルの数、プーリング カーネルのサイズが含まれます。同時に、入力データの次元と出力データの次元を決定することも必要です。これらのパラメータの選択は通常、実験的に決定する必要があります。一般的なアプローチは、最初に単純な CNN モデルを構築し、次に最適なパフォーマンスが達成されるまでパラメーターを徐々に調整することです。
CNN モデルをトレーニングするときは、損失関数とオプティマイザーを設定する必要があります。通常、クロスエントロピー損失関数が広く使用されていますが、確率的勾配降下法オプティマイザーも一般的な選択肢です。トレーニング プロセスでは、トレーニング データをバッチで CNN モデルに入力し、損失関数に基づいて損失値を計算します。次に、オプティマイザーを使用してモデル パラメーターを更新し、損失値を削減します。通常、トレーニングを完了するには複数の反復が必要で、所定のトレーニング エポック数に達するか特定のパフォーマンス基準が満たされるまで、反復ごとにトレーニング データがモデルにバッチ処理されます。
以下は、PyTorch を使用して基本的な畳み込みニューラル ネットワーク (CNN) を構築するコード例です。
import torch import torch.nn as nn class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) # 3个输入通道,6个输出通道,5x5的卷积核 self.pool = nn.MaxPool2d(2, 2) # 2x2的最大池化层 self.conv2 = nn.Conv2d(6, 16, 5) # 6个输入通道,16个输出通道,5x5的卷积核 self.fc1 = nn.Linear(16 * 5 * 5, 120) # 全连接层1,输入大小为16x5x5,输出大小为120 self.fc2 = nn.Linear(120, 84) # 全连接层2,输入大小为120,输出大小为84 self.fc3 = nn.Linear(84, 10) # 全连接层3,输入大小为84,输出大小为10(10个类别) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) # 第一层卷积+激活函数+池化 x = self.pool(torch.relu(self.conv2(x))) # 第二层卷积+激活函数+池化 x = x.view(-1, 16 * 5 * 5) # 将特征图展开成一维向量 x = torch.relu(self.fc1(x)) # 第一层全连接+激活函数 x = torch.relu(self.fc2(x)) # 第二层全连接+激活函数 x = self.fc3(x) # 第三层全连接 return x
上記のコードは、nn から継承された Net という名前のクラスを定義します。 .モジュール。このクラスには、畳み込み層、プーリング層、全結合層に加えて、モデルの前方伝播プロセスを定義するために使用される forward メソッドが含まれています。 __init__ メソッドでは、2 つの畳み込み層、3 つの全結合層、およびプーリング層を定義します。フォワード法では、これらの層を順番に呼び出し、ReLU 活性化関数を使用して畳み込み層と全結合層の出力に対して非線形変換を実行します。最後に、最後に完全に接続された層の出力をモデルの予測として返します。さらに、この CNN モデルの入力は、(batch_size、channels、height、width) の形状を持つ 4 次元テンソルである必要があります。ここで、batch_size は入力データのバッチ サイズ、channels は入力データのチャネル数、height と width はそれぞれ入力データの高さと幅です。この例では、入力データはチャネル数が 3 の RGB カラー イメージである必要があります。
以上がPyTorch を使用して畳み込みニューラル ネットワークを構築する基本手順の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









時系列データでは、観測間に依存関係があるため、相互に独立していません。ただし、従来のニューラル ネットワークは各観測値を独立したものとして扱うため、時系列データをモデル化するモデルの能力が制限されます。この問題を解決するために、リカレント ニューラル ネットワーク (RNN) が導入されました。これは、ネットワーク内のデータ ポイント間の依存関係を確立することにより、時系列データの動的特性をキャプチャするためのメモリの概念を導入しました。反復接続を通じて、RNN は以前の情報を現在の観測値に渡して、将来の値をより適切に予測できます。このため、RNN は時系列データを含むタスクにとって強力なツールになります。しかし、RNN はどのようにしてこの種の記憶を実現するのでしょうか? RNN は、ニューラル ネットワーク内のフィードバック ループを通じて記憶を実現します。これが RNN と従来のニューラル ネットワークの違いです。

FLOPS はコンピュータの性能評価の規格の 1 つで、1 秒あたりの浮動小数点演算の回数を測定するために使用されます。ニューラル ネットワークでは、モデルの計算の複雑さとコンピューティング リソースの使用率を評価するために FLOPS がよく使用されます。これは、コンピューターの計算能力と効率を測定するために使用される重要な指標です。ニューラル ネットワークは、データ分類、回帰、クラスタリングなどのタスクを実行するために使用される、複数のニューロン層で構成される複雑なモデルです。ニューラル ネットワークのトレーニングと推論には、多数の行列の乗算、畳み込み、その他の計算操作が必要となるため、計算の複雑さは非常に高くなります。 FLOPS (FloatingPointOperationsperSecond) を使用すると、ニューラル ネットワークの計算の複雑さを測定し、モデルの計算リソースの使用効率を評価できます。フロップ

双方向 LSTM モデルは、テキスト分類に使用されるニューラル ネットワークです。以下は、テキスト分類タスクに双方向 LSTM を使用する方法を示す簡単な例です。まず、必要なライブラリとモジュールをインポートする必要があります: importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Em

ファジー ニューラル ネットワークは、ファジー ロジックとニューラル ネットワークを組み合わせたハイブリッド モデルで、従来のニューラル ネットワークでは処理が困難なファジーまたは不確実な問題を解決します。その設計は人間の認知における曖昧さと不確実性にインスピレーションを得ているため、制御システム、パターン認識、データマイニングなどの分野で広く使用されています。ファジー ニューラル ネットワークの基本アーキテクチャは、ファジー サブシステムとニューラル サブシステムで構成されます。ファジー サブシステムは、ファジー ロジックを使用して入力データを処理し、それをファジー セットに変換して、入力データの曖昧さと不確実性を表現します。ニューラル サブシステムは、ニューラル ネットワークを使用して、分類、回帰、クラスタリングなどのタスクのファジー セットを処理します。ファジー サブシステムとニューラル サブシステム間の相互作用により、ファジー ニューラル ネットワークはより強力な処理能力を持ち、

SqueezeNet は、高精度と低複雑性のバランスが取れた小型で正確なアルゴリズムであり、リソースが限られているモバイル システムや組み込みシステムに最適です。 2016 年、DeepScale、カリフォルニア大学バークレー校、スタンフォード大学の研究者は、コンパクトで効率的な畳み込みニューラル ネットワーク (CNN) である SqueezeNet を提案しました。近年、研究者は SqueezeNetv1.1 や SqueezeNetv2.0 など、SqueezeNet にいくつかの改良を加えました。両方のバージョンの改良により、精度が向上するだけでなく、計算コストも削減されます。 ImageNet データセット上の SqueezeNetv1.1 の精度

畳み込みニューラル ネットワークは、画像のノイズ除去タスクで優れたパフォーマンスを発揮します。学習したフィルターを利用してノイズを除去し、元の画像を復元します。この記事では、畳み込みニューラル ネットワークに基づく画像ノイズ除去方法を詳しく紹介します。 1. 畳み込みニューラル ネットワークの概要 畳み込みニューラル ネットワークは、複数の畳み込み層、プーリング層、全結合層の組み合わせを使用して画像の特徴を学習および分類する深層学習アルゴリズムです。畳み込み層では、畳み込み演算を通じて画像の局所的な特徴が抽出され、それによって画像内の空間相関が捕捉されます。プーリング層は、特徴の次元を削減することで計算量を削減し、主要な特徴を保持します。完全に接続された層は、学習した特徴とラベルをマッピングして画像分類やその他のタスクを実装する役割を果たします。このネットワーク構造の設計により、畳み込みニューラル ネットワークは画像処理と認識に役立ちます。

Rust は、安全性、パフォーマンス、同時実行性に重点を置いたシステムレベルのプログラミング言語です。オペレーティング システム、ネットワーク アプリケーション、組み込みシステムなどのシナリオに適した安全で信頼性の高いプログラミング言語を提供することを目的としています。 Rust のセキュリティは主に、所有権システムと借用チェッカーという 2 つの側面から実現されます。所有権システムにより、コンパイラはコンパイル時にコードのメモリ エラーをチェックできるため、一般的なメモリの安全性の問題が回避されます。 Rust は、コンパイル時に変数の所有権の転送のチェックを強制することで、メモリ リソースが適切に管理および解放されることを保証します。ボロー チェッカーは、変数のライフ サイクルを分析して、同じ変数が複数のスレッドによって同時にアクセスされないようにすることで、一般的な同時実行セキュリティの問題を回避します。これら 2 つのメカニズムを組み合わせることで、Rust は以下を提供できます。

シャム ニューラル ネットワークは、ユニークな人工ニューラル ネットワーク構造です。これは、同じパラメーターと重みを共有する 2 つの同一のニューラル ネットワークで構成されます。同時に、2 つのネットワークは同じ入力データも共有します。 2 つのニューラル ネットワークは構造的に同一であるため、このデザインは双子からインスピレーションを得ています。シャム ニューラル ネットワークの原理は、2 つの入力データ間の類似性や距離を比較することによって、画像マッチング、テキスト マッチング、顔認識などの特定のタスクを完了することです。トレーニング中、ネットワークは、類似したデータを隣接する領域にマッピングし、異なるデータを離れた領域にマッピングしようとします。このようにして、ネットワークはさまざまなデータを分類または照合する方法を学習して、対応するデータを実現できます。
