<code># 导入必要的库import pandas as pdfrom sklearn.model_selection import train_test_splitfrom sklearn.feature_extraction.text import CountVectorizerfrom sklearn.linear_model import LogisticRegressionfrom sklearn.metrics import accuracy_score# 示例数据data = {'text': ["这部电影太精彩了!", "这个产品很失望。", "今天天气不错。", "我对这个服务感到满意。"], 'sentiment': [1, 0, 1, 1]}df = pd.DataFrame(data)# 将文本转换为特征向量vectorizer = CountVectorizer()X = vectorizer.fit_transform(df['text'])# 划分训练集和测试集X_train, X_test, y_train, y_test = train_test_split(X, df['sentiment'], test_size=0.2, random_state=42)# 构建并训练逻辑回归模型lr = LogisticRegression()lr.fit(X_train, y_train)# 情感分析预测y_pred = lr.predict(X_test)print("情感分析准确率:", accuracy_score(y_test, y_pred))</code>
<code># 导入必要的库from sklearn.naive_bayes import MultinomialNB# 示例数据word_pairs = {"man": "king", "woman": "queen", "Paris": "France", "Rome": "Italy"}X = list(word_pairs.keys())y = list(word_pairs.values())# 构建并训练朴素贝叶斯模型nb = MultinomialNB()nb.fit(X, y)# 类比推理new_word = "queen"predicted_word = nb.predict([new_word```python# 寎入必要的库import numpy as npfrom gensim.models import Word2Vec# 示例数据sentences = [["I", "love", "playing", "football"], ["He", "enjoys", "playing", "basketball"], ["She", "likes", "playing", "soccer"], ["I", "enjoy", "playing", "tennis"]]# 构建词向量模型model = Word2Vec(sentences, min_count=1)# 获取词向量word_vector = model.wv['playing']print("词语'playing'的词向量:", word_vector)# 计算词语相似度similarity = model.wv.similarity('football', 'basketball')print("词语'football'和'basketball'的相似度:", similarity)</code>
<code>import numpy as npfrom gensim.models import KeyedVectors# 加载预训练的词向量模型wv = KeyedVectors.load_word2vec_format('path_to_pretrained_model.bin', binary=True)# 示例:词语翻译english_word = "hello"translated_word = wv.most_similar(positive=[english_word], topn=1)print("英文单词'hello'的翻译:", translated_word[0][0])</code>
以上が感情、類推、および単語翻訳の応用: ロジスティック回帰、単純ベイズ、および単語ベクトルの分析の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。