pandas ライブラリでよく使用される関数の適用効率を向上させるヒント
Pandas ライブラリは、Python でのデータ処理と分析のための重要なツールの 1 つです。データを処理するための豊富な機能と方法が提供されますが、大規模なデータセットを操作する場合は、いくつかの効率的なアプリケーションテクニックにも注意を払う必要があります。この記事では、一般的な関数の効率的な応用テクニックをいくつか紹介し、具体的なコード例を示します。
- データのロードとストレージ
データのロードとストレージは、データ分析の最初のステップです。 Pandas は、CSV、Excel、SQL などのさまざまな形式でデータを読み取り、保存するためのさまざまな関数を提供します。データのロードと保存の効率を向上させるために、次の手法を使用できます。
# 加载数据时,指定数据类型,减少内存占用 df = pd.read_csv('data.csv', dtype={'column1': 'int32', 'column2': 'float64'}) # 使用.to_csv()方法时,指定压缩格式,减小文件大小 df.to_csv('data.csv.gz', compression='gzip')
- データのクリーニングと処理
データのクリーニングと処理は中心的な手順です。データ分析のこと。大規模なデータを処理する場合は、ループ反復の使用を避け、代わりに Pandas ライブラリが提供するベクトル化された操作を使用する必要があります。以下に、一般的で効率的なアプリケーションのヒントをいくつか示します。
# 使用.isin()方法,替代多个“or”条件的筛选操作 df_filtered = df[df['column'].isin(['value1', 'value2', 'value3'])] # 使用.str.contains()方法,替代多个“or”条件的字符串匹配操作 df_match = df[df['column'].str.contains('keyword1|keyword2|keyword3')]
- データの集計とグループ化の計算
データの集計とグループ化の計算は、一般的なデータ処理操作です。大規模なデータ セットに対して集計計算を実行する場合、次の手法を使用して効率を向上できます。
# 使用.groupby()方法,结合聚合函数一次性计算多个指标 df_grouped = df.groupby(['group_col'])['value_col'].agg(['sum', 'mean', 'max']) # 使用transform()方法,一次性计算多个指标,并将结果作为新的一列添加到原数据框中 df['sum_col'] = df.groupby(['group_col'])['value_col'].transform('sum')
- データの視覚化
データの視覚化はデータの重要な部分です。分析とプレゼンテーション。大規模なデータ チャートを描画する場合は、描画効率を向上させるために効率的な視覚化機能を使用することに注意を払う必要があります。
# 使用seaborn库提供的高级绘图函数,如sns.histplot()替代Pandas的.hist()方法 import seaborn as sns sns.histplot(df['column'], kde=True, bins=10)
- 並列コンピューティング
大規模なデータを処理する場合、並列コンピューティングを使用すると、マルチコア プロセッサのパフォーマンスを最大限に活用し、データ処理速度を向上できます。 Pandas ライブラリには、apply() メソッドや map() メソッドなど、並列コンピューティングをサポートする関数がいくつかあります。
import multiprocessing # 定义并行计算函数 def parallel_func(row): # 并行计算逻辑 # 使用multiprocessing库创建并行处理池 with multiprocessing.Pool() as pool: # 使用apply()方法进行并行计算 df['new_column'] = pool.map(parallel_func, df['column'])
要約すると、Pandas ライブラリの一般的な関数は、大規模なデータを処理するときにいくつかの効率的なアプリケーション手法に注意を払う必要があります。合理的なデータのロードと保存、ベクトル化処理、並列コンピューティング、効率的な視覚化機能の使用により、データ処理の効率が向上し、データ分析タスクを迅速に完了できます。この記事で紹介したテクニックが読者の実践に役立つことを願っています。
以上がpandas ライブラリでよく使用される関数の適用効率を向上させるヒントの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









Golang は、同時実行性、効率的なメモリ管理、ネイティブ データ構造、豊富なサードパーティ ライブラリを通じてデータ処理効率を向上させます。具体的な利点は次のとおりです。 並列処理: コルーチンは複数のタスクの同時実行をサポートします。効率的なメモリ管理: ガベージ コレクション メカニズムによりメモリが自動的に管理されます。効率的なデータ構造: スライス、マップ、チャネルなどのデータ構造は、データに迅速にアクセスして処理します。サードパーティ ライブラリ: fasthttp や x/text などのさまざまなデータ処理ライブラリをカバーします。

Redis を使用して Laravel アプリケーションのデータ処理効率を向上させる インターネット アプリケーションの継続的な開発に伴い、データ処理効率が開発者の焦点の 1 つになっています。 Laravel フレームワークに基づいてアプリケーションを開発する場合、Redis を使用してデータ処理効率を向上させ、データの高速アクセスとキャッシュを実現できます。この記事では、Laravel アプリケーションでのデータ処理に Redis を使用する方法を紹介し、具体的なコード例を示します。 1. Redis の概要 Redis は高性能なメモリ データです

Laravel と CodeIgniter のデータ処理機能を比較します。 ORM: Laravel はクラスとオブジェクトのリレーショナル マッピングを提供する EloquentORM を使用しますが、CodeIgniter は ActiveRecord を使用してデータベース モデルを PHP クラスのサブクラスとして表します。クエリビルダー: Laravel には柔軟なチェーンクエリ API がありますが、CodeIgniter のクエリビルダーはよりシンプルで配列ベースです。データ検証: Laravel はカスタム検証ルールをサポートする Validator クラスを提供しますが、CodeIgniter には組み込みの検証関数が少なく、カスタム ルールの手動コーディングが必要です。実践例:ユーザー登録例はLarを示しています

Golang クローラーと Python クローラーの類似点と相違点の詳細な調査: クローリング対策、データ処理、フレームワークの選択 はじめに: 近年、インターネットの急速な発展に伴い、ネットワーク上のデータ量は爆発的に増加しています。成長。インターネット データを取得する技術的手段として、クローラーは開発者の注目を集めています。 Golang と Python という 2 つの主流言語には、それぞれ独自の利点と特徴があります。この記事では、クローリング防止応答やデータ処理など、Golang クローラーと Python クローラーの類似点と相違点について詳しく説明します。

1. このレッスンでは、Excel の統合データ分析について説明します。ケースを通して完成させます。教材を開いて、セル E2 をクリックして数式を入力します。 2. 次に、セル E53 を選択して、以下のすべてのデータを計算します。 3. 次に、セル F2 をクリックし、計算する数式を入力します。同様に、下にドラッグすると、必要な値を計算できます。 4. セル G2 を選択し、「データ」タブをクリックし、「データ検証」をクリックして、選択して確認します。 5. 同じ方法を使用して、計算が必要な下のセルを自動的に入力してみましょう。 6. 次に、実際の賃金を計算し、セル H2 を選択して数式を入力します。 7. 次に、値のドロップダウン メニューをクリックして、他の数値をクリックします。

推奨: 1. ビジネス データ分析フォーラム; 2. 全国人民代表大会経済フォーラム - 計量経済統計分野; 3. 中国統計フォーラム; 4. データ マイニング学習および交換フォーラム; 5. データ分析フォーラム; 6. ウェブサイト データ分析; 7 . データ分析; 8. データマイニング研究所; 9. S-PLUS、R 統計フォーラム。

オープンソースのプログラミング言語として、Go 言語は近年徐々に注目を集め、使用されるようになりました。そのシンプルさ、効率性、強力な同時処理機能によりプログラマーに好まれています。ビッグ データ処理の分野でも、Go 言語は大きな可能性を秘めており、大量のデータを処理し、パフォーマンスを最適化し、さまざまなビッグ データ処理ツールやフレームワークとうまく統合できます。この記事では、Go 言語によるビッグデータ処理の基本的な概念とテクニックをいくつか紹介し、具体的なコード例を通して Go 言語の使用方法を示します。

MySQL ストアド プロシージャ: データ処理効率を向上させる強力なツール 最新のデータベース管理システムでは、ストアド プロシージャは、データベース操作の効率と柔軟性を向上させるために広く使用されているデータ処理ツールです。人気のリレーショナル データベース管理システムとして、MySQL はストアド プロシージャの使用もサポートしています。この記事では、読者がこの機能をより深く理解し、適用できるように、MySQL ストアド プロシージャの基本概念、利点、および具体的なコード例を紹介します。 1. MySQL ストアド プロシージャの基本概念 ストアド プロシージャは事前にプログラムされたものです。
