言語モデルにおける RLHF テクノロジーの起源と応用は何ですか?
RLHF は、人間のフィードバックからの強化学習を表します。この記事では、大規模言語モデル (LLM) と RLHF を組み合わせる方法を紹介します。
RLHF のメカニズム
強化学習は、エージェントと環境の相互作用を通じて最適な戦略を学習する機械学習の一分野です。エージェントは環境の状態の遷移に影響を与えるアクションを選択し、それに応じて報酬を受け取ります。報酬は、強化学習エージェントが戦略を調整するためのフィードバック信号です。トレーニング段階では、エージェントは報酬に基づいて戦略を調整し、長期的な利益を最大化します。
したがって、適切な報酬システムを設計することが重要であり、これが強化学習の鍵となります。一方、RLHF は人間のフィードバックを統合し、人間をトレーニング プロセスに組み込むことで、強化学習エージェントのトレーニング効果を高めます。
RLHF 一般フレームワーク
大規模言語モデル (LLM) の強化学習微調整プロセスは、通常 3 つの段階で構成されます。まず、事前トレーニングされた言語モデルから始めます。 LLM には大量のトレーニング データが必要なため、手動フィードバックを使用して最初から LLM をトレーニングすることは現実的ではありません。したがって、教師なし学習を通じて事前トレーニングを行い、出力生成に既存の言語モデルを使用できます。 事前トレーニングが完了したら、次のステップは微調整フェーズです。この段階では、強化学習アルゴリズムを使用して LLM を最適化します。 LLM は環境と対話することで環境からフィードバックを取得し、モデルのパラメーターを調整することで出力を最適化できます。 最終段階はその後の微調整です。このフェーズでは、LLM は特定のタスクと対話し、
# を渡します。次に、第 2 フェーズに入り、RL システムの報酬モデルを作成する必要があります。この段階では、メイン モデルによって生成されたテキストを取得して品質スコアを生成する別の機械学習モデルをトレーニングします。通常、別の LLM モデルを使用し、テキスト トークンのシーケンスではなくスカラー値を出力するように変更します。この品質スコアは、メイン モデルがより高品質のテキストを生成するように導くための報酬シグナルとして使用されます。 報酬モデルをトレーニングするには、LLM で生成されたテキストを含む品質評価データセットを構築する必要があります。各トレーニング サンプルは、LLM によって生成されたヒントと複数の出力で構成されます。次に、これらの生成されたテキストの品質を人間に評価してもらいました。次に、これらの評価結果を使用して報酬モデルをトレーニングし、LLM によって生成されたテキストのスコアを予測します。 LLM の出力と評価の間でトレーニングすることにより、報酬モデルは人間の好みの数学的表現を構築できます。 最終段階では、強化学習ループを微調整して作成しました。マスター LLM のレプリカが RL エージェントとして使用されます。各トレーニング セットで、LLM はデータセットから複数のキューを取得し、テキストを生成します。次に、テキストは報酬モデルに渡され、人間の好みとの一貫性を評価するスコアが割り当てられます。次に、LLM を更新して、報酬モデルでより高いスコアを示す出力を生成します。 これは言語モデルの一般的な RLHF フレームワークですが、さまざまな実装目標には対応する変更が必要です。 RLHF の言語モデルに関するもう 1 つの考慮事項は、報酬の最適化と言語の一貫性の間のバランスを維持することです。報酬モデルは人間の好みの不完全な近似にすぎませんが、エージェント LLM は、ほとんどの RL システムと同様に、構文的または論理的一貫性に違反することで報酬を最大化する可能性があります。これを防ぐために、ML チームは元の LLM のコピーを保持し、それを RL ループで使用します。彼らは、モデルと元の出力間の偏差が大きくなりすぎるのを防ぐために、元の LLM の出力と RL トレーニング済み LLM の出力の差 (KL 発散) を負の値として報酬信号に統合しました。この戦略は、報酬の最適化と言語の一貫性のバランスを取ることを目的としています。以上が言語モデルにおける RLHF テクノロジーの起源と応用は何ですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性を実証しています。 「S」で始まる関連研究

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

フロントエンド開発の世界では、VSCode はその強力な機能と豊富なプラグイン エコシステムにより、数多くの開発者に選ばれるツールとなっています。近年、人工知能技術の急速な発展に伴い、VSCode 上の AI コード アシスタントが登場し、開発者のコーディング効率が大幅に向上しました。 VSCode 上の AI コード アシスタントは雨後のキノコのように出現し、開発者のコーディング効率を大幅に向上させました。人工知能テクノロジーを使用してコードをインテリジェントに分析し、正確なコード補完、自動エラー修正、文法チェックなどの機能を提供することで、コーディング プロセス中の開発者のエラーや退屈な手作業を大幅に削減します。今日は、プログラミングの旅に役立つ 12 個の VSCode フロントエンド開発 AI コード アシスタントをお勧めします。
