ホームページ テクノロジー周辺機器 AI AI テクノロジーを使用して古い写真を復元する方法 (例とコード分析付き)

AI テクノロジーを使用して古い写真を復元する方法 (例とコード分析付き)

Jan 24, 2024 pm 09:57 PM
AI コンピュータビジョン 画像処理

AI テクノロジーを使用して古い写真を復元する方法 (例とコード分析付き)

古い写真の修復は、人工知能テクノロジーを使用して古い写真を修復、強化、改善する方法です。このテクノロジーは、コンピューター ビジョンと機械学習アルゴリズムを使用して、古い写真の損傷や欠陥を自動的に特定して修復し、写真をより鮮明に、より自然に、より現実的に見せることができます。

古い写真復元の技術原則には主に次の側面が含まれます:

1. 画像のノイズ除去と強化

古い写真を復元する場合は、最初にノイズを除去して強化する必要があります。平均値フィルタリング、ガウス フィルタリング、バイラテラル フィルタリングなどの画像処理アルゴリズムとフィルタを使用して、ノイズやカラー スポットの問題を解決し、写真の品質を向上させることができます。

2. 画像の修復と修復

古い写真には、傷、ひび割れ、色あせ、色あせなどの欠陥や損傷がある場合があります。など。これらの問題は、画像の復元および修復アルゴリズムによって解決できます。一般的に使用されるアルゴリズムには、テクスチャベースの画像修復アルゴリズム、領域ベースの画像修復アルゴリズム、補間ベースの画像修復アルゴリズムなどが含まれます。これらのアルゴリズムは、周囲のピクセルのパターンと特性を学習することで、写真の欠落した部分を自動的に復元できます。

2. 画像再構成と超解像度

解像度が低い一部の古い写真については、画像再構成と超解像度アルゴリズムを使用できます。明瞭さと詳細を改善します。これは、SRCNN、ESPCN、SRGAN などの深層学習ネットワークと畳み込みニューラル ネットワークを使用して実現できます。これらのアルゴリズムは、高解像度画像と低解像度画像の間のマッピング関係を学習することで、低解像度画像を高解像度画像に自動的に変換できます。

3. 色の復元と修正

古い写真には、色の歪みや退色の問題がある場合があり、色の復元と修正が必要になります。これは、グレースケールの世界の仮定に基づく自動ホワイト バランス アルゴリズム、ヒストグラム イコライゼーションに基づくカラー バランス アルゴリズムなど、カラー バランスおよび自動ホワイト バランス アルゴリズムを利用することによって実現できます。これらのアルゴリズムは、画像の色の分布と明るさを自動的に調整して、より自然でリアルに見えるようにします。

以下は、Python と OpenCV ライブラリを使用した古い写真復元のサンプル コードです。

import cv2

# 读取老照片
img = cv2.imread('old_photo.jpg')

# 图像去噪和增强
img = cv2.fastNlMeansDenoisingColored(img, None, 10, 10, 7, 21)
img = cv2.equalizeHist(img)

# 图像修复
mask = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
mask = cv2.threshold(mask, 220, 255, cv2.THRESH_BINARY)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
mask = cv2.erode(mask, None, iterations=4)
mask = cv2.dilate(mask, None, iterations=4)
mask = cv2.medianBlur(mask, 9)
img = cv2.inpaint(img, mask, 3, cv2.INPAINT_TELEA)

# 图像重建和超分辨率
sr = cv2.dnn_superres.DnnSuperResImpl_create()
sr.readModel('espcn_x3.pb')
sr.setModel('espcn', 3)
img = sr.upsample(img)

# 颜色还原和校正
img = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
img = cv2.split(img)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
img[0] = clahe.apply(img[0])
img = cv2.merge(img)
img = cv2.cvtColor(img, cv2.COLOR_LAB2BGR)

# 显示修复后的照片
cv2.imshow('Restored Image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
ログイン後にコピー

このコードは、OpenCV ライブラリのさまざまな画像処理関数を使用し、アルゴリズムによって実現されます。古い写真を復元するさまざまな手順。具体的には、このコードは、画像のノイズ除去と強調に fastNlMeansDenoisingColored() 関数とqualizeHist() 関数を、画像修復に inpaint() 関数を、画像の再構築と超解像度に DnnSuperResImpl_create() 関数と upsample() 関数を使用します。色の復元と補正に createCLAHE() 関数と apply() 関数を使用しました。

このうち、画像修復部分では領域ベースの画像修復アルゴリズムを使用し、マスクの構築、形態学的演算、メディアンフィルタリングの実行により、写真のノイズや欠陥の修復を実現します。の修理です。画像再構成および超解像度部分では、ESPCN アルゴリズムを使用して低解像度画像を高解像度画像に変換し、写真の鮮明さと詳細を向上させます。色の復元と補正部分では、CLAHE アルゴリズムに基づくカラー バランス手法を使用して画像を LAB 色空間に変換し、輝度チャンネルに CLAHE アルゴリズムを適用して色の復元と補正を行います。

実際のアプリケーションでは、最良の結果を得るには、写真の特定の条件とニーズに応じて適切なアルゴリズムとパラメーターを選択する必要があります。

つまり、古い写真の復元は、複数のアルゴリズムとテクノロジーを組み合わせる必要がある複雑な画像処理テクノロジーです。実際のアプリケーションでは、最良の結果を得るために、写真の特定の条件とニーズに応じて適切なアルゴリズムとパラメーターを選択する必要があります。

以上がAI テクノロジーを使用して古い写真を復元する方法 (例とコード分析付き)の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Bytedance Cutting が SVIP スーパー メンバーシップを開始: 継続的な年間サブスクリプションは 499 元で、さまざまな AI 機能を提供 Bytedance Cutting が SVIP スーパー メンバーシップを開始: 継続的な年間サブスクリプションは 499 元で、さまざまな AI 機能を提供 Jun 28, 2024 am 03:51 AM

このサイトは6月27日、JianyingはByteDanceの子会社であるFaceMeng Technologyによって開発されたビデオ編集ソフトウェアであり、Douyinプラットフォームに依存しており、基本的にプラットフォームのユーザー向けに短いビデオコンテンツを作成すると報告しました。 Windows、MacOS、その他のオペレーティング システム。 Jianyingは会員システムのアップグレードを正式に発表し、インテリジェント翻訳、インテリジェントハイライト、インテリジェントパッケージング、デジタルヒューマン合成などのさまざまなAIブラックテクノロジーを含む新しいSVIPを開始しました。価格的には、クリッピングSVIPの月額料金は79元、年会費は599元(当サイト注:月額49.9元に相当)、継続月額サブスクリプションは月額59元、継続年間サブスクリプションは、年間499元(月額41.6元に相当)です。さらに、カット担当者は、ユーザーエクスペリエンスを向上させるために、オリジナルのVIPに登録している人は、

Rag と Sem-Rag を使用したコンテキスト拡張 AI コーディング アシスタント Rag と Sem-Rag を使用したコンテキスト拡張 AI コーディング アシスタント Jun 10, 2024 am 11:08 AM

検索強化生成およびセマンティック メモリを AI コーディング アシスタントに組み込むことで、開発者の生産性、効率、精度を向上させます。 JanakiramMSV 著者の EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG から翻訳。基本的な AI プログラミング アシスタントは当然役に立ちますが、ソフトウェア言語とソフトウェア作成の最も一般的なパターンに関する一般的な理解に依存しているため、最も適切で正しいコードの提案を提供できないことがよくあります。これらのコーディング アシスタントによって生成されたコードは、彼らが解決する責任を負っている問題の解決には適していますが、多くの場合、個々のチームのコーディング標準、規約、スタイルには準拠していません。これにより、コードがアプリケーションに受け入れられるように修正または調整する必要がある提案が得られることがよくあります。

微調整によって本当に LLM が新しいことを学習できるようになるのでしょうか: 新しい知識を導入すると、モデルがより多くの幻覚を生成する可能性があります 微調整によって本当に LLM が新しいことを学習できるようになるのでしょうか: 新しい知識を導入すると、モデルがより多くの幻覚を生成する可能性があります Jun 11, 2024 pm 03:57 PM

大規模言語モデル (LLM) は巨大なテキスト データベースでトレーニングされ、そこで大量の現実世界の知識を取得します。この知識はパラメータに組み込まれており、必要なときに使用できます。これらのモデルの知識は、トレーニングの終了時に「具体化」されます。事前トレーニングの終了時に、モデルは実際に学習を停止します。モデルを調整または微調整して、この知識を活用し、ユーザーの質問により自然に応答する方法を学びます。ただし、モデルの知識だけでは不十分な場合があり、モデルは RAG を通じて外部コンテンツにアクセスできますが、微調整を通じてモデルを新しいドメインに適応させることが有益であると考えられます。この微調整は、ヒューマン アノテーターまたは他の LLM 作成物からの入力を使用して実行され、モデルは追加の実世界の知識に遭遇し、それを統合します。

GenAI および LLM の技術面接に関する 7 つのクールな質問 GenAI および LLM の技術面接に関する 7 つのクールな質問 Jun 07, 2024 am 10:06 AM

AIGC について詳しくは、51CTOAI.x コミュニティ https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou を参照してください。これらの質問は、インターネット上のどこでも見られる従来の質問バンクとは異なります。既成概念にとらわれずに考える必要があります。大規模言語モデル (LLM) は、データ サイエンス、生成人工知能 (GenAI)、および人工知能の分野でますます重要になっています。これらの複雑なアルゴリズムは人間のスキルを向上させ、多くの業界で効率とイノベーションを推進し、企業が競争力を維持するための鍵となります。 LLM は、自然言語処理、テキスト生成、音声認識、推奨システムなどの分野で幅広い用途に使用できます。 LLM は大量のデータから学習することでテキストを生成できます。

新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 新しい科学的で複雑な質問応答ベンチマークと大規模モデルの評価システムを提供するために、UNSW、アルゴンヌ、シカゴ大学、およびその他の機関が共同で SciQAG フレームワークを立ち上げました。 Jul 25, 2024 am 06:42 AM

編集者 |ScienceAI 質問応答 (QA) データセットは、自然言語処理 (NLP) 研究を促進する上で重要な役割を果たします。高品質の QA データ セットは、モデルの微調整に使用できるだけでなく、大規模言語モデル (LLM) の機能、特に科学的知識を理解し推論する能力を効果的に評価することもできます。現在、医学、化学、生物学、その他の分野をカバーする多くの科学 QA データ セットがありますが、これらのデータ セットにはまだいくつかの欠点があります。まず、データ形式は比較的単純で、そのほとんどが多肢選択式の質問であり、評価は簡単ですが、モデルの回答選択範囲が制限され、科学的な質問に回答するモデルの能力を完全にテストすることはできません。対照的に、自由回答型の Q&A

あなたが知らない機械学習の 5 つの流派 あなたが知らない機械学習の 5 つの流派 Jun 05, 2024 pm 08:51 PM

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

SOTA パフォーマンス、厦門マルチモーダルタンパク質-リガンド親和性予測 AI 手法、初めて分子表面情報を結合 SOTA パフォーマンス、厦門マルチモーダルタンパク質-リガンド親和性予測 AI 手法、初めて分子表面情報を結合 Jul 17, 2024 pm 06:37 PM

編集者 | KX 医薬品の研究開発の分野では、タンパク質とリガンドの結合親和性を正確かつ効果的に予測することが、医薬品のスクリーニングと最適化にとって重要です。しかし、現在の研究では、タンパク質とリガンドの相互作用における分子表面情報の重要な役割が考慮されていません。これに基づいて、アモイ大学の研究者らは、初めてタンパク質の表面、3D 構造、配列に関する情報を組み合わせ、クロスアテンション メカニズムを使用して異なるモダリティの特徴を比較する、新しいマルチモーダル特徴抽出 (MFE) フレームワークを提案しました。アライメント。実験結果は、この方法がタンパク質-リガンド結合親和性の予測において最先端の性能を達成することを実証しています。さらに、アブレーション研究は、この枠組み内でのタンパク質表面情報と多峰性特徴の位置合わせの有効性と必要性​​を実証しています。 「S」で始まる関連研究

AIなどの市場を開拓するグローバルファウンドリーズがタゴール・テクノロジーの窒化ガリウム技術と関連チームを買収 AIなどの市場を開拓するグローバルファウンドリーズがタゴール・テクノロジーの窒化ガリウム技術と関連チームを買収 Jul 15, 2024 pm 12:21 PM

7月5日のこのウェブサイトのニュースによると、グローバルファウンドリーズは今年7月1日にプレスリリースを発行し、自動車とインターネットでの市場シェア拡大を目指してタゴール・テクノロジーのパワー窒化ガリウム(GaN)技術と知的財産ポートフォリオを買収したことを発表した。モノと人工知能データセンターのアプリケーション分野で、より高い効率とより優れたパフォーマンスを探求します。生成 AI などのテクノロジーがデジタル世界で発展を続ける中、窒化ガリウム (GaN) は、特にデータセンターにおいて、持続可能で効率的な電力管理のための重要なソリューションとなっています。このウェブサイトは、この買収中にタゴール・テクノロジーのエンジニアリングチームがGLOBALFOUNDRIESに加わり、窒化ガリウム技術をさらに開発するという公式発表を引用した。 G

See all articles