陰的マルコフ モデルにおける Baum-Welch アルゴリズムの適用
隠れマルコフ モデル (HMM) は、時系列データのモデリングと予測に一般的に使用される統計モデルです。 Baum-Welch アルゴリズムは、前方後方アルゴリズムとしても知られ、HMM パラメーター推定に使用される教師なし学習アルゴリズムです。この記事では、Baum-Welch アルゴリズムの原理と実装プロセスを詳しく紹介します。
1. HMM の概要
Baum-Welch アルゴリズムを紹介する前に、まず HMM モデルを理解しましょう。 HMM モデルは、隠れマルコフ連鎖によって観測シーケンスをランダムに生成するプロセスを記述するために使用される確率モデルです。隠れマルコフ連鎖は、一連の状態と状態間の遷移確率で構成され、観測シーケンスは各状態によって生成された観測で構成されます。 HMM モデルの基本的な仮定は、観測シーケンス内の各観測値は現在の状態にのみ依存し、過去の状態や観測とは何の関係もないということです。 Baum-Welch アルゴリズムは、HMM モデルのパラメーターを推定するために使用される教師なし学習アルゴリズムです。モデルが観測データによりよく適合するように、観測シーケンスに従ってモデルの遷移確率と放出確率を繰り返し調整します。 Baum-Welch アルゴリズムは複数回の反復を通じて最適なモデル パラメーターを見つけることができるため、観測シーケンスの生成プロセスをより正確に記述することができます。
HMM モデルは 3 つのパラメーターで説明できます:
1. 初期状態確率ベクトル (π)、初期状態確率を表します。モデル ;
2. 状態遷移確率行列 (A)、ある状態から別の状態に遷移する確率を示します;
3.観測確率行列 (B)。各状態で観測が生成される確率を表します。
HMM モデルは通常、予測と推論に前方アルゴリズムと後方アルゴリズムを使用します。ただし、HMM モデルの 3 つのパラメーターはトレーニング データから推定する必要があります。これは、Baum-Welch アルゴリズムが行うことです。
2. Baum-Welch アルゴリズムの原理
Baum-Welch アルゴリズムは、EM アルゴリズムに基づく教師なし学習アルゴリズムです。 HMM モデルの 3 つのパラメータを推定します。 EM アルゴリズムは、E ステップと M ステップを交互に繰り返すことで尤度関数を最大化し、パラメーターを解決する反復アルゴリズムです。 HMM では、E ステップは、現在のパラメーターが与えられた瞬間に各状態にある確率を計算し、M ステップは、これらの確率を通じてモデル パラメーターを更新します。
具体的には、Baum-Welch アルゴリズムのプロセスは次のとおりです:
1. モデル パラメーター (π、A、 B);
2. 順方向アルゴリズムと逆方向アルゴリズムを使用して、現在のパラメーターが与えられた各瞬間に各状態にある確率を計算します。
#3. これらの確率を使用してモデル パラメーターを更新します。具体的には、初期状態確率ベクトル π、状態遷移確率行列 A、および観測確率行列 B を更新します。 4。モデル パラメーターが収束するまで、ステップ 2 とステップ 3 を繰り返します。 ステップ E では、現在のパラメータを与えて各瞬間に各状態にある確率を計算する必要があります。具体的には、前方確率 α と後方確率 β を計算する必要があります: α_t(i)=P(O_1,O_2,…,O_t,q_t=i|λ) β_t(i)=P(O_t 1,O_t 2,…,O_T|q_t=i,λ) ここで、λ は現在のモデルパラメータ、O は観測シーケンスを表し、q は状態シーケンスを表します。 α_t(i) は時間 t で状態 i にある確率を表し、β_t(i) は状態 i の条件を考慮した場合の時間 t 1 から時間 T までの観測シーケンスの確率を表します。 αとβは再帰的に計算できます。 ステップ M では、これらの確率を使用してモデル パラメーターを更新する必要があります。具体的には、新しい初期状態確率ベクトル π、状態遷移確率行列 A、および観測確率行列 B を計算する必要があります: π_i=α_1(i)β_1(i)/P ( O|λ) A_ij=∑_(t=1)^(T-1)α_t(i)a_ij b_j(O_t 1)β_t 1(j)/∑_ ( t=1)^(T-1)α_t(i)β_t(i) B_j(k)=∑_(t=1)^(T-1)γ_t ( j,k)/∑_(t=1)^(T-1)γ_t(j) ここで、γ_t(i,j) は、状態 i にあることを意味します。時刻 t および時刻 t 1 で 1 が状態 j にある確率、P(O|λ) は観測系列の確率を表します。これらの式を使用してモデル パラメーターを更新できます。 Baum-Welch アルゴリズムの収束は保証されていますが、局所的な最適解に収束する可能性があります。この状況を回避するには、通常、Baum-Welch アルゴリズムを複数回実行し、最適なモデル パラメーターを選択する必要があります。 3. Baum-Welch アルゴリズムの実装 Baum-Welch アルゴリズムの実装には、通常、いくつかの技術的な詳細が含まれます。以下は、Baum-Welch アルゴリズムの実装の詳細です: 1. 数値アンダーフローを回避します α と β を計算するとき、次のような理由があります。確率 値が非常に小さいため、数値アンダーフローが発生する可能性があります。これを回避するには、対数確率関数と対数尤度関数を計算に使用できます。 2. ゼロ確率を避ける B を計算するとき、特定の状態は特定の時点で特定の観測値を生成する可能性があります。値はゼロです。これを回避するには、加算平滑化や乗算平滑化などの平滑化手法を使用できます。 3. 複数の実行を使用する Baum-Welch アルゴリズムは局所的な最適解に収束する可能性があるため、通常は複数の実行が必要なアルゴリズムです。最適なモデルパラメータを選択します。一般に、Baum-Welch アルゴリズムは EM アルゴリズムに基づく教師なし学習アルゴリズムであり、自然言語処理、音声認識などの分野で広く使用されています。
以上が陰的マルコフ モデルにおける Baum-Welch アルゴリズムの適用の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











画像の注釈は、ラベルまたは説明情報を画像に関連付けて、画像の内容に深い意味と説明を与えるプロセスです。このプロセスは機械学習にとって重要であり、画像内の個々の要素をより正確に識別するために視覚モデルをトレーニングするのに役立ちます。画像に注釈を追加することで、コンピュータは画像の背後にあるセマンティクスとコンテキストを理解できるため、画像の内容を理解して分析する能力が向上します。画像アノテーションは、コンピュータ ビジョン、自然言語処理、グラフ ビジョン モデルなどの多くの分野をカバーする幅広い用途があり、車両が道路上の障害物を識別するのを支援したり、障害物の検出を支援したりするなど、幅広い用途があります。医用画像認識による病気の診断。この記事では主に、より優れたオープンソースおよび無料の画像注釈ツールをいくつか推奨します。 1.マケセンス

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

平たく言えば、機械学習モデルは、入力データを予測された出力にマッピングする数学関数です。より具体的には、機械学習モデルは、予測出力と真のラベルの間の誤差を最小限に抑えるために、トレーニング データから学習することによってモデル パラメーターを調整する数学関数です。機械学習には、ロジスティック回帰モデル、デシジョン ツリー モデル、サポート ベクター マシン モデルなど、多くのモデルがあります。各モデルには、適用可能なデータ タイプと問題タイプがあります。同時に、異なるモデル間には多くの共通点があったり、モデル進化の隠れた道が存在したりすることがあります。コネクショニストのパーセプトロンを例にとると、パーセプトロンの隠れ層の数を増やすことで、それをディープ ニューラル ネットワークに変換できます。パーセプトロンにカーネル関数を追加すると、SVM に変換できます。これです

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

MetaFAIR はハーバード大学と協力して、大規模な機械学習の実行時に生成されるデータの偏りを最適化するための新しい研究フレームワークを提供しました。大規模な言語モデルのトレーニングには数か月かかることが多く、数百、さらには数千の GPU を使用することが知られています。 LLaMA270B モデルを例にとると、そのトレーニングには合計 1,720,320 GPU 時間が必要です。大規模なモデルのトレーニングには、これらのワークロードの規模と複雑さにより、特有のシステム上の課題が生じます。最近、多くの機関が、SOTA 生成 AI モデルをトレーニングする際のトレーニング プロセスの不安定性を報告しています。これらは通常、損失スパイクの形で現れます。たとえば、Google の PaLM モデルでは、トレーニング プロセス中に最大 20 回の損失スパイクが発生しました。数値的なバイアスがこのトレーニングの不正確さの根本原因です。
