Kai-Fu Lee は、世界クラスのオープンソース マルチモーダル大規模モデルをリリースした Zero One Wish に参加しました。
中国語と英語の 2 つの権威あるリストをリードする Kai-Fu Zero は、マルチモーダル大型モデル 解答用紙を手渡しました。
最初のオープンソース大型モデル Yi-34B および Yi-6B のリリースから 3 か月も経っていません。
このモデルは Yi Vision Language (Yi-VL) と呼ばれ、現在、世界に対して正式にオープンソースです。
は Yi シリーズに属し、
Yi-VL-34B と Yi-VL-6B の 2 つのバージョンもあります。
グラフィックやテキストの対話などのさまざまなシナリオで Yi-VL のパフォーマンスを体験するために、まず 2 つの例を見てみましょう:
Yi-VL 各図看板の内容説明だけでなく、「天井」まで徹底的に分析しました。
Yi-VL は中国語でも、明確かつ体系的に正確に表現できます:
さらに、公式テスト結果も提供されました。
Yi-VL-34B は、英語のデータセット MMMU で 41.6% の精度を持ち、55.7% の精度を持つ GPT-4V に次いで 2 番目であり、一連のマルチモーダルを上回っています。大型モデル。
中国のデータセット CMMMU では、Yi-VL-34B の精度は 36.5% であり、これは現在の最先端のオープンソース マルチモーダル モデルを上回っています。
#Yi-VL とはどのようなものですか?
Yi-VL は Yi 言語モデルに基づいて開発されています。Yi 言語モデルに基づいた強力なテキスト理解機能を確認できます。画像を並べるだけで、優れたマルチモーダル視覚言語モデルを取得できます。 - これも Yi-VL モデルの核となるハイライトの 1 つです。
アーキテクチャ設計の観点から見ると、Yi-VL モデルはオープンソース LLaVA アーキテクチャに基づいており、次の 3 つの主要モジュールが含まれています:
- Vision Transformer
- (略して ViT) 画像エンコードの場合、オープンソースの OpenClip ViT-H/14 モデルを使用してトレーニング可能なパラメーターを初期化し、大規模な「画像とテキスト」のペアから特徴を抽出する方法を学習することで、モデル画像を処理して理解する能力があります。 投影モジュールは、画像特徴とテキスト特徴をモデルに空間的に位置合わせする機能をもたらします。このモジュールは、層正規化
- を含む多層パーセプトロン (多層パーセプトロン、MLP と呼ばれる) で構成されています。この設計により、モデルが視覚情報とテキスト情報をより効果的に融合して処理できるようになり、マルチモーダルの理解と生成の精度が向上します。 Yi-34B-Chat および Yi-6B-Chat の大規模言語モデルの導入により、Yi-VL に強力な言語理解および生成機能が提供されます。モデルのこの部分では、高度な自然言語処理テクノロジーを使用して、Yi-VL が複雑な言語構造を深く理解し、一貫した関連性のあるテキスト出力を生成できるようにします。
△キャプション: Yi-VL モデル アーキテクチャの設計とトレーニング方法のプロセスの概要
トレーニング方法について、Yi - VL モデルのトレーニング プロセスは 3 つの段階に分かれており、モデルの視覚処理能力と言語処理能力を包括的に向上させることを目的としています。 最初の段階では、ViT モジュールと投影モジュールが 1 億個の「画像とテキスト」のペアのデータセットを使用してトレーニングされます。
この段階では、大規模な言語モデルとの効率的な調整を達成しながら、特定のアーキテクチャにおける ViT の知識獲得機能を強化するために、画像解像度は 224x224 に設定されています。
第 2 段階では、ViT の画像解像度が 448x448 に増加し、モデルが複雑な視覚的詳細をよりよく認識できるようになります。この段階では約 2,500 万の「画像とテキスト」のペアが使用されます。
第 3 段階では、マルチモーダル チャット インタラクションにおけるモデルのパフォーマンスを向上させることを目的として、モデル全体のパラメーターがトレーニング用に公開されます。トレーニング データは、合計約 100 万の「画像とテキスト」のペアを含む多様なデータ ソースをカバーし、データの幅とバランスを確保しています。
zero-yiwu 技術チームは、BLIP、Flamingo、EVA などの他のマルチモーダル トレーニング方法を使用して、イー言語モデルの強力な言語理解および生成機能に基づいて効率的な画像を迅速にトレーニングできることも検証しました。グラフィック テキストの対話を理解し、スムーズにするためのマルチモーダル グラフィック テキスト モデル。
Yi シリーズ モデルは、マルチモーダル モデルの基本言語モデルとして使用でき、オープン ソース コミュニティに新しいオプションを提供します。同時に、ゼロワン シングスのマルチモーダル チームは、より速く GPT-4V に近づき、GPT-4V を超え、世界初のエシュロン レベルに到達するために、マルチモーダルの事前トレーニングをゼロから模索しています。
Yi-VL モデルは現在、Hugging Face や ModelScope などのプラットフォームで公開されており、ユーザーはグラフィックやテキストの対話などのさまざまなシナリオでこのモデルのパフォーマンスを直接体験できます。
一連の大規模マルチモーダル モデルを超えて
新しいマルチモーダル ベンチマーク テスト MMMU では、Yi-VL-34B と Yi-VL-6B の両方のバージョンが良好なパフォーマンスを示しました。
MMMU (フルネーム Massive Multi-discipline Multi-modal Understanding & Reasoning Massive Multi-discipline Multi-modal Understanding and Reasoning) データ セットには、6 つの中核分野からの 11,500 人の被験者が含まれています (芸術とデザイン、ビジネス、科学、健康と医学、人文科学と社会科学、技術と工学) 非常に異質な画像タイプと絡み合ったテキスト画像情報を含む質問は、モデルの高度な認識能力と推論能力が非常に高いレベルに達することに課題をもたらします。要求します。
Yi-VL-34B は、このテスト セットで 41.6% の精度で一連のマルチモーダル大型モデルを上回り、GPT-4V に次いで 2 位となりました (55.7%)、学際的な知識を理解し、応用する高い能力を示しています。
同様に、中国向けに作成された CMMMU データセットでは、Yi-VL モデルは「中国人をよりよく理解する」という独自の利点を示しています。
CMMMU には、大学の試験、テスト、教科書から派生した約 12,000 の中国語のマルチモーダルな質問が含まれています。
その中で、GPT-4V はこのテスト セットで 43.7% の精度を持ち、次に Yi-VL-34B が 36.5% の精度で、現在トップをリードしています。最先端のオープンソース マルチモーダル モデル。
プロジェクトアドレス:
[1]https://huggingface.co/01-ai
[2] https://www.modelscope.cn/organization/01ai
以上がKai-Fu Lee は、世界クラスのオープンソース マルチモーダル大規模モデルをリリースした Zero One Wish に参加しました。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









0.この記事は何をするのですか?私たちは、多用途かつ高速な最先端の生成単眼深度推定モデルである DepthFM を提案します。従来の深度推定タスクに加えて、DepthFM は深度修復などの下流タスクでも最先端の機能を実証します。 DepthFM は効率的で、いくつかの推論ステップ内で深度マップを合成できます。この作品について一緒に読みましょう〜 1. 論文情報タイトル: DepthFM: FastMonocularDepthEstimationwithFlowMatching 著者: MingGui、JohannesS.Fischer、UlrichPrestel、PingchuanMa、Dmytr

従来のコンピューティングを超える能力を備えているだけでなく、より低コストでより効率的なパフォーマンスを実現する人工知能モデルを想像してみてください。これは SF ではありません。世界で最も強力なオープンソース MoE モデルである DeepSeek-V2[1] が登場しました。 DeepSeek-V2 は、経済的なトレーニングと効率的な推論の特徴を備えた強力な専門家混合 (MoE) 言語モデルです。これは 236B のパラメータで構成されており、そのうち 21B は各マーカーをアクティブにするために使用されます。 DeepSeek67B と比較して、DeepSeek-V2 はパフォーマンスが優れていると同時に、トレーニング コストを 42.5% 節約し、KV キャッシュを 93.3% 削減し、最大生成スループットを 5.76 倍に高めます。 DeepSeek は一般的な人工知能を研究する会社です

AI は確かに数学を変えつつあります。最近、この問題に細心の注意を払っている陶哲軒氏が『米国数学協会会報』(米国数学協会会報)の最新号を送ってくれた。 「機械は数学を変えるのか?」というテーマを中心に、多くの数学者が意見を述べ、そのプロセス全体は火花に満ち、ハードコアで刺激的でした。著者には、フィールズ賞受賞者のアクシャイ・ベンカテシュ氏、中国の数学者鄭楽軍氏、ニューヨーク大学のコンピューター科学者アーネスト・デイビス氏、その他業界で著名な学者を含む強力な顔ぶれが揃っている。 AI の世界は劇的に変化しています。これらの記事の多くは 1 年前に投稿されたものです。

今月初め、MIT やその他の機関の研究者らは、MLP に代わる非常に有望な代替案である KAN を提案しました。 KAN は、精度と解釈可能性の点で MLP よりも優れています。また、非常に少数のパラメーターを使用して、多数のパラメーターを使用して実行する MLP よりも優れたパフォーマンスを発揮できます。たとえば、著者らは、KAN を使用して、より小規模なネットワークと高度な自動化で DeepMind の結果を再現したと述べています。具体的には、DeepMind の MLP には約 300,000 個のパラメーターがありますが、KAN には約 200 個のパラメーターしかありません。 KAN は、MLP が普遍近似定理に基づいているのに対し、KAN はコルモゴロフ-アーノルド表現定理に基づいているのと同様に、強力な数学的基礎を持っています。以下の図に示すように、KAN は

Boston Dynamics Atlas は正式に電動ロボットの時代に突入します!昨日、油圧式アトラスが歴史の舞台から「涙ながらに」撤退したばかりですが、今日、ボストン・ダイナミクスは電動式アトラスが稼働することを発表しました。ボストン・ダイナミクス社は商用人型ロボットの分野でテスラ社と競争する決意を持っているようだ。新しいビデオが公開されてから、わずか 10 時間ですでに 100 万人以上が視聴しました。古い人が去り、新しい役割が現れるのは歴史的な必然です。今年が人型ロボットの爆発的な年であることは間違いありません。ネットユーザーは「ロボットの進歩により、今年の開会式は人間のように見え、人間よりもはるかに自由度が高い。しかし、これは本当にホラー映画ではないのか?」とコメントした。ビデオの冒頭では、アトラスは仰向けに見えるように地面に静かに横たわっています。次に続くのは驚くべきことです

何?ズートピアは国産AIによって実現するのか?ビデオとともに公開されたのは、「Keling」と呼ばれる新しい大規模な国産ビデオ生成モデルです。 Sora も同様の技術的ルートを使用し、自社開発の技術革新を多数組み合わせて、大きく合理的な動きをするだけでなく、物理世界の特性をシミュレートし、強力な概念的結合能力と想像力を備えたビデオを制作します。データによると、Keling は、最大 1080p の解像度で 30fps で最大 2 分の超長時間ビデオの生成をサポートし、複数のアスペクト比をサポートします。もう 1 つの重要な点は、Keling は研究所が公開したデモやビデオ結果のデモンストレーションではなく、ショートビデオ分野のリーダーである Kuaishou が立ち上げた製品レベルのアプリケーションであるということです。さらに、主な焦点は実用的であり、白紙小切手を書かず、リリースされたらすぐにオンラインに移行することです。Ke Ling の大型モデルは Kuaiying でリリースされました。

世界は狂ったように大きなモデルを構築していますが、インターネット上のデータだけではまったく不十分です。このトレーニング モデルは「ハンガー ゲーム」のようであり、世界中の AI 研究者は、データを貪欲に食べる人たちにどのように餌を与えるかを心配しています。この問題は、マルチモーダル タスクで特に顕著です。何もできなかった当時、中国人民大学学部のスタートアップチームは、独自の新しいモデルを使用して、中国で初めて「モデル生成データフィード自体」を実現しました。さらに、これは理解側と生成側の 2 つの側面からのアプローチであり、両方の側で高品質のマルチモーダルな新しいデータを生成し、モデル自体にデータのフィードバックを提供できます。モデルとは何ですか? Awaker 1.0 は、中関村フォーラムに登場したばかりの大型マルチモーダル モデルです。チームは誰ですか?ソフォンエンジン。人民大学ヒルハウス人工知能大学院の博士課程学生、ガオ・イージャオ氏によって設立されました。

最近、軍事界は、米軍戦闘機が AI を使用して完全自動空戦を完了できるようになったというニュースに圧倒されました。そう、つい最近、米軍のAI戦闘機が初めて公開され、その謎が明らかになりました。この戦闘機の正式名称は可変安定性飛行シミュレーター試験機(VISTA)で、アメリカ空軍長官が自ら飛行させ、一対一の空戦をシミュレートした。 5 月 2 日、フランク ケンダル米国空軍長官は X-62AVISTA でエドワーズ空軍基地を離陸しました。1 時間の飛行中、すべての飛行動作が AI によって自律的に完了されたことに注目してください。ケンダル氏は「過去数十年にわたり、私たちは自律型空対空戦闘の無限の可能性について考えてきたが、それは常に手の届かないものだと思われてきた」と語った。しかし今では、
